Nano Structuring Photoresist Adhesion Promoter for Improved Signal Integrity in the Modern HDI-PCB Fabrication
The euphoria associated with the biggest technological step in the field of telecommunications in recent history, the new 5G mobile communications standard, not only made it necessary for OEMs to adopt this technology to keep up with the competition, but also shaped new requirements regarding the production of communication device circuit boards in order to be able to exploit the full potential of this and similar technologies.
In order to approximate this objective, it is essential that noise, distortion and losses of data signals are significantly reduced, since these parameters represent the controllable framework conditions of a telecommunication device, which are directly related to performance losses in terms of transmission speed, reception range and latency. However, common adhesion promoters used in several process steps in the manufacturing of classical PCBs, MLBs and HDI circuit boards are to some extent causing these problems due to the nature of their work mechanism – surface roughening. While these effects played a negligible role at lower frequencies, they now take center stage as distortion, losses and noise amplify with an increasing frequency and roughness. As a solution to this problem, the industry is primarily focused and eager to develop new dielectric materials and non-etching adhesion promoters for inner layer bonding applications. However, further opportunities exist in other production steps, where the signal integrity can still be improved by displacing commonly used micro-etching surface pretreatments for solder-mask and photoresist adhesion with low or non-etching alternatives. Unfortunately, this leads to a subsequent problem, namely lower adhesion, and low production yield due to a weaker mechanical bond.
This work describes the functional principle of a novel, anisotropic, nano-copper engraving, photoresist pretreatment for multilayer and advanced HDI PCBs. It is designed to optimize the signal integrity especially for high frequency applications, while ensuring excellent adhesion. This is done by a two-step surface treatment process, which involves an ordinary cleaner to remove mild oxidation and a special anisotropic conditioner, which selectively engraves nano cavities in z-direction, while maintaining the integrity of the surface dimension. The data indicates that this method can in fact combine the benefits of classical micro-etching and newer non-etching solutions and seems to be a viable addition to the high frequency PCB production process.
Key words: High frequency, micro-etching, adhesion promotor, signal integrity, semi additive process, dry film, photoresist, nano-engraving