

# IPC-2221, Keeping pace with the times

### Gary Ferrari CID+, CII FTG Circuits

GaryFerrari@firantechnology.com (860) 350-9300 www.firantechnology.com



## **Surface Finishes**

## APEX Electroless Nickel/Immersion Gold (ENIG)

Table 4-8 ENIG Surface Finish Advantages and Disadvantages

| Advantages                     | Limitations                      |
|--------------------------------|----------------------------------|
| Uniform coplanar surface       | Moderately higher cost to OSP or |
|                                | HASL                             |
| Excellent wetability ,with     | Multi-step process               |
| eutectic and Pb-free solder    |                                  |
| Multiple Pb-free reflow cycles | Requires good process control    |
| Ideal contacting surface       | Poor process control may lead    |
|                                | to Black Pad                     |
| Aluminum wire bondable         | Not recommended for gold wire    |
|                                | bonding                          |
| Shelf-Life – capable of J-STD- | Limited re-workability           |
| 003 Category 3 durability      |                                  |
| Improved PTH reliability       | Solder mask must be fully cured  |
|                                | before ENIG                      |
| Nickel barrier reduces copper  |                                  |
| dissolution during Pb free     |                                  |
| solder assembly and/or rework. |                                  |

### Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG)

Table 4-XX ENEPIG Surface Finish Advantages and Disadvantages

| Advantages                              | Limitations                      |
|-----------------------------------------|----------------------------------|
| Uniform coplanar surface                | Moderately higher cost to OSP or |
|                                         | HASL                             |
| Excellent wetability, with eutectic and | Multi-step process               |
| lead-free solder                        |                                  |
| Multiple lead-free reflow cycles        | Requires good process control    |
| Ideal contacting surface                | Limited re-workability           |
| Shelf-Life – capable of J-STD-003       | Solder mask must be fully cured  |
| Category 3 durability                   | before ENEPIG is plated.         |
| Aluminum and gold wire bondable         | Difficult to build thicker gold  |
|                                         | finishes over palladium          |
| Improved PTH reliability                |                                  |
| No probability of "Black Pad"           |                                  |
| Alleviates copper dissolution from      |                                  |
| hole walls                              |                                  |

#### **APEX Electroless Nickel/Immersion Gold/Electroless Gold (ENIG/ENAG)**

#### Table 4-XY ENEG Surface Finish Advantages and Limitations

| Advantages                                                               | Limitations                                                 |
|--------------------------------------------------------------------------|-------------------------------------------------------------|
| Uniform coplanar surface                                                 | Limited applicability for soldering                         |
| Gold wire bondable                                                       | Multi-step process                                          |
| Compression connection surface                                           | More stringent process control of electroless gold required |
| Improved PTH reliability                                                 | Moderately higher cost to OSP or<br>HASL                    |
| Shelf-Life – capable of J-STD-003<br>Category 3 durability               | Limited re-workability                                      |
| No copper sidewalls, No overhang or slivers, pad completely encapsulated |                                                             |



### **Immersion Silver**

#### Table 4-9 Immersion Silver Surface Finish Advantages and Limitations

| Advantages                          | Limitations                       |
|-------------------------------------|-----------------------------------|
| Uniform coplanar surface            | Limited re-workability            |
|                                     |                                   |
| Excellent wetability ,with eutectic | Solder mask \ must be fully       |
| and lead-free solder                | cured before Immersion silver     |
| Low loss finish compatible with     | Reduced Shelf Life –in            |
| RF design requirements              | environments containing sulfur    |
|                                     | compounds or chlorides.           |
|                                     | Excessive thickness of IAg        |
|                                     | combined with lead-free silver    |
|                                     | bearing solder, has the           |
|                                     | potential to create an embrittled |
|                                     | solder joint.                     |
|                                     | No Nickel barrier allows copper   |
|                                     | dissolution during lead-free      |
|                                     | solder assembly and/or rework.    |

## APEX Organic Solderability Preservative (OSP)

Table 4-10 OSP Surface Finish Advantages and Limitations

| Advantages                                  | Limitations                                         |  |  |  |  |
|---------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Uniform coplanar surface                    |                                                     |  |  |  |  |
| Some OSPs do not deposit on gold            | May require an aggressive flux                      |  |  |  |  |
| Reworkable, aqueous process                 | Boards with OSP coating requires careful handling   |  |  |  |  |
| Controllable, automated process             | Not easy to inspect or measure                      |  |  |  |  |
| No process thermal shock during application | Exposed copper areas may be vulnerable to corrosion |  |  |  |  |
| Preferentially coats copper                 | Not a suitable contact surface                      |  |  |  |  |
| Consistent compliant pin insertion          | Class 3 solder of holes with aspect                 |  |  |  |  |
| and rework                                  | ratios greater than 10:1 are not                    |  |  |  |  |
|                                             | achievable.                                         |  |  |  |  |
| Least expensive of all final finishes       |                                                     |  |  |  |  |
|                                             | May have limited in-process hold times              |  |  |  |  |
|                                             | As there is no Nickel barrier, copper               |  |  |  |  |
|                                             | dissolution may occur during lead-                  |  |  |  |  |
|                                             | free solder assembly and/or rework.                 |  |  |  |  |
|                                             | OSPs may be damaged by baking prior to soldering    |  |  |  |  |



**Additional Finishes** 

### Surface Finishes not available at printing

- Immersion Tin
- Hot Air Solder Leveling (HASL)



## Surface Finish Application Guide

| Application                                   | Lead-free<br>Hot Air<br>Solder<br>Level | Organic<br>Solderability<br>Protection | Electroless<br>Nickel/<br>Immersion<br>Gold | Electroless<br>Nickel/<br>Electroless<br>Palladium/<br>Immersion<br>Gold | Electroless<br>Nickel/<br>Immersion<br>Palladium/<br>Immersion<br>Gold | Electrolytic<br>Nickel/<br>Electrolytic<br>Palladium/<br>Electrolytic<br>Gold | Electrolytic<br>Nickel/<br>Electrolytic<br>Gold | Electroless<br>Nickel/<br>Immersion<br>Gold/<br>Electroless<br>Gold | Immersion<br>Tin | Immersion<br>Silver |
|-----------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|------------------|---------------------|
| Reference<br>Paragraph                        | 4.4                                     |                                        |                                             |                                                                          |                                                                        |                                                                               |                                                 |                                                                     |                  |                     |
| Finish Code                                   | LF-HASL                                 | OSP                                    | ENIG                                        | ENEPIG                                                                   | ENIPIG                                                                 | ENEPEG                                                                        | Ni/Au                                           | ENAG                                                                | iSN              | iAg                 |
| Soldering                                     | Ð                                       | 0                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | 0                                               | 0                                                                   | ٥                | O                   |
| Gold<br>Embrittlement                         | •                                       | •                                      | •                                           | •                                                                        | •                                                                      | 0                                                                             | 0                                               | 0                                                                   | •                | •                   |
| Switch<br>Contacts                            | Ð                                       | 0                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | 0                | Ð                   |
| Wire Bonding                                  | 0                                       | 0                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               | •                                                                   | 0                | O                   |
| Press Fit                                     | •                                       | ?                                      | •                                           | ٠                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | •                | Đ                   |
| Compliant Pin                                 | •                                       | ?                                      | •                                           | ٠                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | •                | O                   |
| Edge Board<br>Connector                       | O                                       | 0                                      | 0                                           | Ð                                                                        | D                                                                      | •                                                                             | •                                               |                                                                     | 0                | 0                   |
| Shelf Life<br>(1 year)                        | Ð                                       | 0                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | 0                | Ð                   |
| Oxidation<br>Resistance                       | •                                       | 0                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | Ð                | Ð                   |
| Solderable<br>After Multiple<br>Reflow Cycles | •                                       | 0                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | 0                | •                   |
| Coplanarity                                   | 0                                       | •                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | •                | •                   |
| Radio<br>Frequency<br>(RF)                    | Ð                                       | D                                      | O                                           | D                                                                        | D                                                                      | Ð                                                                             | Đ                                               |                                                                     | O                | •                   |
| Special<br>Packaging                          | •                                       | •                                      | •                                           | •                                                                        | •                                                                      | •                                                                             | •                                               |                                                                     | •                | Ð                   |

• = Preferred • = Functional • = Not Recommended



| Code  | Finish                                                                            | Thickness                                           | Applicable<br>Acceptabili<br>ty<br>Specificatio<br>n | Marking<br>Code <sup>1</sup> |
|-------|-----------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------|
| S     | Solder Coating over Bare Copper                                                   | Coverage & Solderable <sup>2</sup>                  | J-STD-003<br>J-STD-006                               | b0                           |
| b1    | Lead-Free Solder Coating over Bare Copper                                         | Coverage & Solderable <sup>2</sup>                  | J-STD-003<br>J-STD-006                               | b1                           |
| Т     | Electrodeposited Tin-Lead (fused) -<br>minimum                                    | Coverage & Solderable <sup>2</sup>                  | J-STD-003<br>J-STD-006                               | b3                           |
| X     | Either Type S or T                                                                | As indic                                            |                                                      |                              |
| TLU   | Electrodeposited Tin-Lead Unfused -<br>minimum                                    | 8.0 µm [315 µin]                                    | J-STD-003<br>J-STD-006                               | b3                           |
| G     | Gold for edge printed board connectors and areas not to be soldered - minimum     | Class 1 and Class 2<br>0.8 µm [31.5 µin]<br>Class 3 | None                                                 | b4                           |
|       |                                                                                   | 1.25 µm [49.21 µin]                                 |                                                      | 04                           |
| GS    | Gold Electroplate on areas to be soldered – maximum <sup>3</sup>                  | 0.45 μm [17.72 μin]                                 | None                                                 | b4                           |
|       | Gold Electroplate for areas to be wire bonded (ultrasonic) – minimum              | 0.05 µm [1.97 µin]                                  | None                                                 | b4                           |
| GWB-1 | Electrolytic nickel under gold for areas to be wire bonded (ultrasonic) - minimum | 3 µm [118 µin]                                      | None                                                 | b4                           |



| GWB-2  | Gold Electroplate for areas to be wire bonded (thermosonic) - minimum              | Class 1 and Class<br>2<br>0.3 µm [11.8 µin]<br>Class 3<br>0.8 µm [31.5 µin] | None | b4  |
|--------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|-----|
|        | Electrolytic nickel under gold for areas to be wire bonded (thermosonic) - minimum | 3 µm [118 µin]                                                              | None | b4  |
|        | Nickel - Electroplate for edge printed board                                       | Class 1<br>2.0 µm [78.7 µin]                                                |      | N/A |
| N      | connectors - minimum                                                               | Class 2 and Class<br>3<br>2.5 µm [98.4 µin]                                 | None |     |
| NB     | Nickel-Electroplate as a barrier <sup>4</sup> - minimum                            | 1.3 µm [51.2 µin]                                                           | None | N/A |
| OSP    | Organic Solderability Preservative                                                 | Solderable <sup>7</sup>                                                     | None | b6  |
| HT OSP | High Temperature OSP                                                               | Solderable <sup>7</sup>                                                     | None | b6  |



|                              | Electroless Nickel - minimum                  | 3 µm [118 µin]                               |            | b4  |
|------------------------------|-----------------------------------------------|----------------------------------------------|------------|-----|
| ENIG                         | Immersion Gold - minimum                      | 0.05 µm [1.97 µin]⁵                          | IPC-4552   | b4  |
| Electroless Nickel - minimum |                                               | 3 µm [118 µin]                               | IPC-4552   | b4  |
| ENEPIG                       | Electroless Palladium - minimum               | 0.05 µm [2 µin]                              | ASTM-B-679 | N/A |
|                              | Immersion Gold – minimum                      | Coverage and<br>Solderable <sup>7</sup> None |            | b4  |
| DIG                          | Direct Immersion Gold (Solderable<br>Surface) | Solderable <sup>5</sup>                      | None       | b4  |
| IS                           | Immersion Silver                              | Solderable <sup>6</sup>                      | IPC-4553   | b2  |
| IT                           | Immersion Tin                                 | Solderable <sup>7</sup>                      | IPC-4554   | b3  |
| С                            | Bare Copper                                   | AABUS                                        | AABUS      | N/A |

## Surface Finish Codes – cont'd

Note 1. These marking and labeling codes represent the codes for surface finish categories established in IPC/JEDEC-J-STD-609.

Note 2. Hot Air Leveling (HAL) or Hot Air Solder Leveling (HASL) processes are considered to have a degree of difficulty in their control. This, coupled with pad sizes and geometries placing additional challenges on such processes, places the creation of a practical minimum thickness outside the scope of this specification. See also 4.4.7.

Note 3. Industry investigations have shown that a gold-tin intermetallic phase forms under normal soldering process parameters when the weight percent of gold in the solder joint reaches the 3-4% range. Refer to IPC-J-STD-001 and IPC-HDBK-001 for further information on gold removal to prevent the formation of brittle solder joints resulting from high concentrations of gold dissolving into the solder joint.



Note 4. Nickel plating used under the tin-lead or solder coating for high temperature operating environments act as a barrier to prevent the formation of copper-tin compounds. Note 5. See also 4.4.4.1.

Note 6. Surface measurements, when required for immersion silver thickness, require a unique pad size for both thin and/or thick silver deposits. See IPC-4553 for detailed measurement requirements.

Note 7. See 4.4.7.



## **Assembly Marking**



### Marking for Lead Free Assemblies

### Suggested marking per J-STD-609



Figure 4-4 Pb-Free Symbol



Figure 4-5 Example of Mark Showing Category 2 and Option of Circle or Ellipse

#### 5 LABELING CATEGORIES

5.1 Solder Finish Categories The following categories are meant to describe the Pb-free 2<sup>nd</sup> level interconnect (see Figure 4-5) terminal finish/material of components and/or the solder paste/solder used in assembly.

el – SnAgCu

- e2 Other Sn alloys (ie. SnCu, SnAg, SnAgCuX, etc.) (No Bi or Zn)
- e3 Sn
- e4 Precious metals (ie. Ag, Au, NiPd, NiPdAu, but no Sn)
- e5 SnZn, SnZnX (no Bi)
- e6 Contains Bi
- e7 Low temperature solder (<150°C) containing indium but no bismuth
- e8, e9 symbols are unassigned categories at this time.



## Testing





- Assembly testing
  - Boundary Scan (JTAG)
    - a) for high density where probe testing is not possible
    - b) at a connector must have compatible components
  - Functional Test
    - a) go/No Go
    - b) at a connector
  - In Circuit Test (ICT)
    - a) bed of nails fixtures
    - b) electrical considerations



## Testing

- Bare Board Testing implements IPC-9252A Guidelines and Requirements for Electrical Testing of Unpopulated Printed Boards
  - resistive continuity (IPC-9252)
    - a) measures the resistance of the net: high, good; low, bad
  - resistive isolation (IPC-9252)
    - a) Measures resistance between isolated nets: high, good; low, bad
  - indirect isolation & continuity
    - a) Measures electrical properties: Capacitance, RF, Impedance, Etc
    - b) Insulation resistance & Hi Pot testing



## Testing

- Impedance testing

a) Coupon design

Sample notes:

- XX. Impedance testing (IPC-TM-650, Method 2.5.5.7)
- XX.1 Single ended: (Conductor widths .0059 on Layer X)
- The printed board shall exhibit a characteristic impedance of 52.5 ohms (+/- 15%) as measured using a Time Domain Reflectometer (TDR) which shall be verified by measurement of impedance coupons supplied by the fabricator.
- XX.2 Differential pairs: (Conductor widths .0059 on layer X)
- The printed board shall exhibit a characteristic impedance of 105 ohms (+/- 15%) as measured using a Time Domain Reflectometer (TDR) which shall be verified by measurement of impedance coupons supplied by the fabricator.



## **Special Materials**



Generic Overview of Electronic Component Materials

- Embedded (Buried) Resistors
  - Cost drivers
  - Application drivers
  - Special applications
- Embedded (Buried) Capacitors
  - Distributed capacitance (planar)
- Embedded (Buried) Inductors



## **Special Requirements**



Lead Free References

Added to the following sections:

- Materials
- Surface Finishes
- Fabrication
- Components
- Assembly



**Tin Whisker Mitigation** 

• Conformal coatings, in particular Type UR, are sometimes used to help mitigate tin whiskers as a means of reducing the potential for an electrical short circuit. However, when used for this purpose, it is recommended that a second method of tin whisker mitigation be used since tin whiskers can grow under the coating or may penetrate the coating, depending on its thickness. See IPC/JEDEC-JP002 for additional information.

## Shock and Vibration - Component Bonding

Filleting – after placement of components





## Thermal Management – Heat Sinks

#### **Table 7-3 Printed Board Heatsink Assembly Preferences**

| Method          | Major Advantages                                                                                                          | Major Disadvantages                                                  | Considerations                                |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| Rivets          | Fastest, no cure cycle or<br>adhesive application                                                                         | Printed board area and holes needed for rivets                       | Use standard rivet<br>sizes                   |
| Screws          | Allows disassembly                                                                                                        | Requires washers and nuts, printed board area and holes              | Use standard<br>hardware                      |
| Film Adhesive   | No wasted space,<br>potentially improved heat<br>transfer, higher vibration<br>natural frequency.<br>Increased insulation | Cure time and possible<br>warpage                                    | Low cure temperature<br>will minimize warpage |
| Liquid Adhesive | No waster space,<br>potentially improved heat<br>transfer, higher vibration<br>natural frequency                          | Producibility concern as<br>well as cure time and<br>warpage concern | Low cure temperature<br>will minimize warpage |



 Retiring IPC-2224 Sectional Standard for Design of PWB's for PC Cards

| Form Factor | Length    | Width     | Interconnect Area <sup>1</sup> | Substrate Area <sup>1</sup> $(+/-0.01)$ |
|-------------|-----------|-----------|--------------------------------|-----------------------------------------|
| туре        | (+/-0.02) | (+/-0.01) | (+/-0.003)                     | (+/-0.01)                               |
| Туре І      | 85.6 mm   | 54.0 mm   | 4.19 mm                        | 4.19 mm                                 |
| Type II     | 85.6 mm   | 54.0 mm   | 4.19 mm                        | 6.35 max.                               |
| Type III    | 85.6 mm   | 54.0 mm   | 4.19 mm                        | 10.0 mm                                 |

IPC-2221 to include specific PC Card requirements:

- Smaller features
- Thinner dielectrics
- Reliability issues



## PC Cards (PCMCIA) Technology

- Thermal Considerations
  - Maximize planes on every layer
  - Thermal creams of plane rails
  - "Hot" component placement
  - Housing materials
  - Card mounting environment



**Conductor Routing** 

 Internal lands should not be removed to "make enough room" to route a circuit between holes. To help maintain internal minimum spacing, circuit routing should always be performed with all of the lands in place on all layers for each hole. After all circuits have been routed, nonfunctional lands may be removed. (See IPC-2222, section 9.1.4.)





To be Added:

- Applicable reference to IPC-2152 Standard for Determining Current-Carrying Capacity in Printed Board Design
- Planar Capacitance structures



## Components



## **Expanded Component Section**

Includes

- Component Lead Sockets
- Fine Pitch Devices
  - Thin shrink small outline package (TSSOP)
  - Shrink Quad Flat Package (SQFP)
- Grid Array SMT
  - Ball Grid Array (BGA)
  - Fine Pitch Ball Grid Array (FBGA)
  - Column Grid Array (CGA)
  - Land Grid Array (LGA)



Underfi

Solder Balls

(Sn5Pb95)

IPC-7351-14-03







## **Expanded Component Section**

No Lead Devices



- Small Outline No-Lead (SON)
- Quad Flat No-Lead with Pullback Leads (PQFN)
- Small Outline No-Lead with Pullback Leads (PSON)





## **Expanded Component Section**

- Compliant Pin Systems
  - Considerations
    - a) Standards
      - Insertion and Retention Forces
    - b) Qualification as a System
    - c) Surface Finishes and Coatings
      - Corrosion compatibility
      - hardness
    - d) Environmental



## **Via Protection**



Via Protection - Types

|   | Description (Type)                        | Before Final Finish | After Non-Melting Metal<br>Final Finish | Prevent air leakage in ICT<br>(Vacuum Seal) <sup>2</sup> | eeping chemistry or solder from passing<br>through the via | Keeping chemistry or solder from being trapped in the via | Dielectric protection of via land | Fill holes in cores prior<br>to lamination | Improves surface planarity | Prevent migration of solder,<br>adhesives or encapsulants<br>into vias |
|---|-------------------------------------------|---------------------|-----------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|--------------------------------------------|----------------------------|------------------------------------------------------------------------|
|   | Tented-Single-<br>Sided (Ia)              |                     |                                         |                                                          | NC                                                         | T RECC                                                    | OMMEN                             | NDED⁵                                      |                            |                                                                        |
|   | Tented –Double-<br>Sided (Ib)             | X                   | X                                       | x                                                        | x                                                          | x                                                         | х                                 |                                            |                            | X                                                                      |
| Π | Tented and Covered-<br>Single-Sided (IIa) |                     |                                         |                                                          | NC                                                         | OT RECC                                                   | OMMEN                             | NDED⁵                                      |                            |                                                                        |
|   | Tented and Covered-<br>Double-Sided (IIb) | X                   | X                                       | X                                                        | X                                                          | х                                                         | X                                 |                                            |                            | X                                                                      |
|   | Plugged Single-Sided<br>(IIIa)            |                     |                                         |                                                          | NC                                                         | T RECC                                                    | )MMEN                             | IDED⁵                                      |                            |                                                                        |
|   | Plugged Double-<br>Sided (IIIb)           | X                   | X                                       | X                                                        | x                                                          | х                                                         | Х                                 |                                            | х                          | x                                                                      |
|   | Plugged and Covered<br>Single-Sided (IVa) |                     |                                         |                                                          | NC                                                         | T RECC                                                    | MMEN                              | 1DED <sup>5</sup>                          |                            |                                                                        |



### Via Protection - Types

**A**ee

|    | Description (Type)                        | Before Final Finish | After Non-Melting Metal<br>Final Finish | Prevent air leakage in ICT<br>(Vacuum Seal)² | ping chemistry or solder from passing<br>through the via | Keeping chemistry or solder from being trapped in the via |   | Fill holes in cores prior to lamination |   | Best for thermal conductivity <sup>3</sup> | Prevent migration of solder,<br>adhesives or encapsulants<br>into vias |
|----|-------------------------------------------|---------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---|-----------------------------------------|---|--------------------------------------------|------------------------------------------------------------------------|
| 10 | Plugged and Covered<br>Double-Sided (IVb) | х                   | Х                                       | X                                            | х                                                        | X                                                         | Х |                                         |   |                                            | x                                                                      |
| 96 | Filled (fully plugged)<br>(V)             | x                   | X                                       | x                                            | x                                                        | X                                                         |   | X                                       | X | x                                          | x                                                                      |
| 36 | Filled and Covered (VI)                   | Х                   | Х                                       | X                                            | х                                                        | X                                                         | x |                                         |   |                                            | x                                                                      |
|    | Filled and Capped $(VII)^4$               | Х                   | х                                       | х                                            | х                                                        | X                                                         |   | х                                       | X | х                                          | X                                                                      |

Derived from Table 5-1 of IPC-4761

1) Descriptions of specific types of via protection are provided in IPC-4761 5.1 through 5.7.

- 2) Not recommended over melting metals.
- 3) It is recommended to use a thermally conductive hole filling ink (e.g. silver ink).
- 4) When specifying Via-in-Pad, it is recommended that Type VII via protection be used.
- 5) See IPC-4761 3.4 for concerns associated with single sided via protection.



### Via Protection

|                                                     | Tented<br>no fill | Tented and covered | Plugged | Plugged<br>and<br>Covered | Filled | Filled<br>and<br>covered | Filled<br>Capped |
|-----------------------------------------------------|-------------------|--------------------|---------|---------------------------|--------|--------------------------|------------------|
| Type(b)                                             | I                 | II                 |         | IV                        | V      | VI                       | VII              |
| Minimum Class 1,2                                   | N.A.              | N.A.               | 0.010   | 0.010                     | 0.010  | 0.010                    | 0.010            |
| Minimum Class 3                                     | N.A.              | N.A.               | 0.010   | 0.010                     | 0.013  | 0.013                    | 0.013            |
| Maximum Class 1<br>and 2                            | 0.0256            | .040               | 0.050   | 0.050                     | 0.040* | 0.040*                   | 0.040*           |
| Maximum Class 3                                     | 0.0256            | .0256              | 0.050   | 0.050                     | 0.040* | 0.040*                   | 0.040*           |
| Maximum<br>Aspect Ratio***<br>Class 1,2             | N.A.              | N.A.               | N.A.    | N.A.                      | 8      | 8                        | 8                |
| Maximum<br>Aspect Ratio <sup>***</sup> –<br>Class 3 | N.A.              | N.A.               | N.A.    | N.A.                      | 8      | 8                        | 8                |
| Minimum<br>Aspect Ratio<br>**Class 1,2              | N.A.              | N.A.               | N.A.    | N.A.                      | 3      | 3                        | 3                |
| Minimum<br>Aspect Ratio <sup>**</sup> –<br>Class 3  | N.A.              | N.A.               | N.A.    | N.A.                      | 3      | 3                        | 3                |



### Via Protection

| Maximum<br>Aspect Ratio***<br>Class 3            | N.A. | N.A. | N.A. | N.A. | 8 | 8 | 8 |
|--------------------------------------------------|------|------|------|------|---|---|---|
| Minimum<br>Aspect Ratio<br>**Class 1,2           | N.A. | N.A. | N.A. | N.A. | 3 | 3 | 3 |
| Minimum<br>Aspect Ratio <sup>**</sup><br>Class 3 | N.A. | N.A. | N.A. | N.A. | 3 | 3 | 3 |

\* Larger diameter hole fills can be done. Depends on aspect ratios, hole fill material and environment
\*\* Minimum aspect ratio is for thin printed boards/cores below 0.031 inches
\*\*\* Maximum Aspect Ratio dependent on hole fill material and thickness. This aspect ratio refers to the minimum hole size mentioned in the table. Ie. .010" hole and aspect ratio of 8.