

International Electronics Manufacturing Initiative

Photovoltaics: The iNEMI Road Map

Alan Rae IPC Apex Panel April, 2011

Advancing manufacturing technology

Topics

• The 2011 iNEMI Solar PV roadmap

 Involvement of the electronics supply chain

 Example of an electronics opportunity – micro-inverters

The iNEMI Photovoltaics Roadmap

- Nine Chapters
 - Technologies
 - Crystalline Silicon
 - Concentrating PV
 - Thin Film Amorphous Silicon
 - Thin Film Cadmium Telluride (CdTe)
 - Thin Film CIGS
 - Thin Film Organics
 - Balance of System/Inverters

Materials

Crystalline Silicon

- 20,000 MW installed worldwide
- Most established technology
- Efficiency is good

 Monocrystalline: 16-23%
 Polycrystalline: 15-18%
- Good technology for cloudy climates
- Well-suited to modest installations
 - -Highly scalable
 - -Favorite for rooftops

Concentrating PV

- ~25 MW installed worldwide
- Light focused onto small semiconductor targets
- Materials inexpensive

-Very low volume of semiconductors -Other materials readily available/inexpensive (glass, acrylic, steel, aluminum)

-Packaging can be complex (high UV flux / temperature)

• Requires direct sun

-Must be mounted on trackers

-Holds promise for locations with clear skies

Good fit for large installations

Tracking

Technology	Cost Adder	Efficiency Improvement	Best Application
Flat Plate	0%	0%	Standard flat panel
Fixed Tilt	5%	15%	Standard flat panel
Single-Axis	10%	22%	Standard flat Panel
Dual-Axis	20%	32%	CPV

Thin Film

- 2,000 MW installed worldwide
- Lowest cost/Watt today
- Semiconducting material applied directly to panel
- Very low cost

 Offset by low efficiency 5-14%
 Competes with crystalline panels
- Productive in cloudy climates
- Strong contender for BIPV

 Works on curved surfaces
 Can use flexible substrates
- Economies of scale important
- Several varieties

Thin-Film Technologies

- Cadmium Telluride (CdTe)
 - Most established to date First Solar
- Amorphous Silicon
 - Manufactured like LCD TV screens
- CIGS (Copper Indium Gallium Selenide)
 - Could become highest-efficiency thin-film technology
 - Technical problems still being worked out
- Organic
 - Currently the least well researched
 - No high-temperature processes it's like paint
 - Opens myriad possibilities PV on product packaging

Most work on curved and flexible substrates

InverterBalance of System

- Inverter warranties are shorter than those of modules
- Inverter efficiency highly impacts real cost 92-95%
- Much research is being done to address these two issues
- New technologies appearing
 - Micro Inverters
 - Shading control
- Energy storage

Tracking

- What to do when the sun goes down?

- Materials short A gaterials were provided by the state of the state of
 - Polysilicon shortage of 2005-2008 is an example
 - PV became an important demand driver
 - Existing refining capacity couldn't keep up
 - Silicon prices skyrocketed
 - Other materials could experience the same dynamic
 - Indium
 - Tellurium
 - Gallium
 - Silver and Aluminum pastes
 - Plastic encapsulants: PET, EVA, etc

- Addressing the certain the c
 - PV's Cost is several times that of conventional generation
 - Its success still depends upon subsidies
 - Past success stories:
 - Japan
 - Germany
 - Spain
 - (Italy/Greece)
 - More in the future?
 - US, UK
- Not all materials come from multiple

countries

Balance of System

- Elements
 - Racking
 - Tracking
 - Connectors and cables
 - Inverters

13

- Grid connect hardware and software
- Issues
 - Applicability

Reliability

Inverters

- Lifetime 5-7 years vs. 25 years for panels
- Issues include
 - Wearout of electrolytic capacitors in centralized inverters
 - Cheap and available

- Substitutes are much larger and more expensive!
- Wearout mechanism is electrolyte evaporation
- Accelerated by temperature

Micro Inverters

- Convert to AC at the panel
 - No high voltage DC installers needed
 - Can install safety shutoffs at each panel for fire protection
 - Individual panel monitoring (3-5% ar failure rate)
 - Simplified grid connection
 - Add, exchange, substitute panels at withness (no string balancing)

Lower capacity, more units

Micro Inverter Industry Characteristics

- Many start-up micro inverter companies
- Increasing involvement of EMS companies
 - Positively impacts cost and learning curve
 - 4-5,000 panels per MW means the EMS model works well

16

Local manufacture where needed

Challenges

PV Young, but Growing

- A young industry with issues:
 - Which technologies will win?
 - How to grow without subsidies?
 - Reconciling cross-cutting issues?
- Plenty of room to grow
 - Scale will make costs competitive
 - Subsidies will no longer be needed
 - Orders of magnitude growth is possible
 - 20,000 MW today
 - 2,000,000 MW to come?
 - Only solar and nuclear can supply all our

Acknowledgements

- Jim Handy (Objective Analysis) and the iNEMI roadmap team.
 - Alternative Energy Workshop Results, 10.30-12.00 Thursday South Pacific I

18

Global Solar Technology and its contributors.

www.inemi.org

N

0

Email contacts: Bill Bader Bill.bader@inemi.org Bob Pfahl bob.pfahl@inemi.org

