Coating Thickness Measurement of Thin Gold and Palladium Coatings on Printed Circuit Boards using X-Ray Fluorescence

> Michael Haller Fischer Technology, Windsor CT, USA

Volker Rößiger, Simone Dill Helmut Fischer GmbH, Sindelfingen, Germany

- The Measurement Application
- Measurement Requirements
- Measurement Problems
- Measurement Results
- Reference Samples
- Conclusions

Measurement Application Au/Pd/Ni(P)/Cu/..

• Layer thickness as described in IPC 4556/2

CAN

- 40 125 nm Au (1.6 -5u'') thinner for lead frame applications
- 50 150 nm Pd (2-6u'')
- 3 6 μm Ni(P) (120u''-240'')

TPS

• Base Materials:

PO" 2012

- Cu/Epoxy + Br + Fiberglas
- Cu/Ceramic
- Cu/Polyimide
- CuFe2
- Cu/???
- Copper in PCB's can occur as multiple layers.
 - Influences Cu Kα/Kß radiation ratio Accuracy

APEX EXPO 2012 CONT TO CIS IPC CIS C3

Measurement Requirements

- Meet standard/part specifications
- Sufficiently small standard deviation (instrument precision) to meet Gage R&R requirements- T/s value
- Ensure minimum plating thickness requirement with minimum over plating
- Accuracy
- Reproducibility
- Measurement spot size often < 0.1 mm (Polycapillary)
- Accurate positioning table < 5 um

XRF-Instrument considerations

- Detector technology (Proportional Counter PC, PIN-Diode, SDD)
- Spot size defined by collimator or X-ray Optic (Polycapillary)
- Automate measurement with programmable x-y-z table
- Software requirements to overcome challenges of the application
 - Peak Overlap (Ar-K & Pd-L), Cu-thickness, Br-correction, Background scattering, Pile-up, Interference from Bragg-Peaks

Comparison of Spectra

APEX EXPO 2012 CAN

IPC

Tos CO

and the second s

Measurement Problems-Peak overlap

Au-Lα peak overlaps with Cu-Kα peak Au-Lβ peak overlaps with Br-Kα peak. Problematic for thin coatings

Measurement Problems

- Overlap of Ar-K Pd-L radiation
- SDD- Pd resolved
- Minimize Ar-peak

Measurement Problem Cu Kα/Kß-ratio

Detector (PC, PIN, SDD) 900 eV resolution

Detector (PC, PIN, SDD) 200 eV Resolution

Detektor (PC, PIN, SDD) 140 eV resolution

– Ar-K – Pd-L-Overlap

Better detector resolution SDD. Minimizing Ar-Peaks by optimized instrument design

- Background Scattering

Correction by Software. For flexible boards special sample fixture

– Pile-up

Intensive Pile-ups corrected by software

- Bragg-Peaks

Eliminated during analysis-always at same position

Cu in several Layers -> Kα/Kβ-ratio

Measure Cu-thickness

Instrument Comparison

		XDLM-237	XDAL	XDV-µ
	Detector	PC	PIN	SDD
	Intensity (cps)	9500	4400	55000
	Measurement Spot Size (mm)	0.25	0.35	0.06
Calibration Standards	Standard Deviation			
<mark>13 nm Au</mark> 49 nm Au	s(Au) [nm]	<mark>2.4</mark> 2.4	<mark>1.2</mark> 2.1	<mark>0.7</mark> 0.4
<mark>16 nm Pd</mark> 327 nm Pd	s(Pd) [nm]	<mark>3.6</mark> 6.3	5 8	<mark>2.2</mark> 1.4
<mark>2000 nm Ni</mark> 2700 nm Ni	s(Ni) [nm]	<mark>46</mark> 124	23 17	2.9 2.5
	Measurement conditions: 30 s, 10 Measurements			

Au-measurements "Accurate" or "True"

Substrate	Fitting of Scattering Background Cu-Thickness variable With Br- compensation	No Fitting of Scattering Background Cu-Thickness fixed. No Br-Compensation
PCB Epoxy without Bromine	111 (4)	111 (1)
PCB Epoxy with Bromine	112 (4)	129 (!) (1)

111 nm Au /PCB. Mean and Std.Dev.. X-RAY XDLM®, Collimator 0,3 mm * 0.05 mm calibrated

APEX EXPO 2012 CANI IPC

TPS

Making Standards-Rutherford backscattering RBS

Correlation of RBS-XRF and Gravimetric Analysis

TPS

APEX EXPO 2012

Trueness – Tracebility To "Good" Referece Standards With Small

Total Measurement Uncertainty

Standard	Au [nm]	u [nm]	Pd [nm]	u [nm]	Ni [nm]	u [nm]
1	213,8	2,6			103,6	4,1
2	486,8	4,7			250,4	8,5
3	117,5	1,3			2510	35
4	114,1	1,3			5710	46
5			21,6	0,6	2101	35
6			87,3	0,9	2363	33
7			333,2	2,6	2263	29
8	48,1	0,7	21,1	0,8	2211	33
9	44,0	0,7	92,1	0,9	2354	35
10	45,8	0,7	331,7	2,7	2693	30
11	11,8	0,2	18,7	0,4	2425	34
12	28,4	0,6			2217	32

Conclusion

- DD Detector is State of the Art
- Software: <u>Addressing all measurement challenges;</u>
 Measurement Results for Au, Pd and Ni(P), independent
 <u>of substrate material</u>
- Traceability and Reproducibility through Reference
 Standards

Instrument Comparison 2

Measurement Results (Standard deviation and coefficient of variation COV%) for a PCB-Board with 50 nm Au und 24 nm Pd (underneath 2.1 μ m Ni/30 μ m Cu/Substrate=FR4) for different detectors. Measurement time 25 * 120 s

Layer	Proportional Counter (0,2 mm Collimator)	PIN Detector (1 mm collimator)	SDD – Detector (1 mm collimator)
50 nm Au	2,2 nm (4,3 %)	0,9 nm (1,8 %)	0,2 nm (0,4 %)
24 nm Pd	3 nm (13 %)	1.2 nm (4,8 %)	0.5 nm (2,1 %)

Instrument Comparison

-fischer-®

	XDLM-237	XDAL	XDV-µ		
Detector	PC	PIN	SDD		
Intensity (cps)	9500	4400	55000		
Measurement Spot Size (mm)	0.25	25 0.35			
Calibration StandardsADBAG: 13.1 nm Au/ 16 nm Pd/2000 nm Ni/ADBAD: 49 nm Au/ 327 nm Pd /2700 nm Ni/					
Standard Deviation					
s(Au) [nm]	<mark>2.4</mark> / 2.4	1.2 / 2.1	<mark>0.7</mark> / 0.4		
s(Pd) [nm]	<mark>3.6</mark> / 6.3	5 / 8	<mark>3.2</mark> / 1.4		
s(Ni) [nm]	<mark>46</mark> / 124	<mark>23</mark> / 17	<mark>2.9</mark> / 2.5		
Measurement conditions: 30 s, 10 Measurements					