

1NEM

BFR-Free High Reliability Project

Project Leader Stephen Tisdale, Intel Corporation

Advancing manufacturing technology

APEX INEMI BER-Free High Reliability PCB Project

IS / IS NOT							
This Project IS:	This Project IS NOT:						
Technical evaluation of key electrical and mechanical properties	An EHS assessment						
Focused on those attributes which are of most value to supply chain	Biased towards specific laminate suppliers, geographies, or market segments						
Build on learning from prior investigations	Repeat of prior work						
Focused on completely HF SMT and Wave Solder Assembly & Rework Capability	Focused on standard processing						
Focused on circuit board materials in LF assembly and LF solder joint reliability Board / Component Interaction	Focused only on materials characterization						

APEX IN EMI BER-Free High Reliability PCB Project

•Phase 1: Design

•Goal: Review prior work and make recommendations for testing

- •needed. Investigation should take into account the needs of
- •electronic product sectors represented by iNEMI membership
- Identify market segment requirements
- Identify candidate materials
- Identify key performance characteristics and test criteria
- Design test vehicle(s) and test methodologies, leverage
 standards where possible
 - Identify Components to be used in this project to evaluate SJR / board reliability

APEX INEMI BFR-Free High Reliability PCB Project

•Phase 2: Test

- •Goal: Develop, manage, and execute performance testing
- Develop evaluation schedule
- Procure parts and test vehicles
- Assign teams to carry out completion of the testing in a
 standardized fashion
 .
- Perform mechanical and reliability testing on test vehicles.

APEX OINEMI BER-Free High Reliability PCB Project

•Phase 3: Results

•Goal: Compile results, assess significance, make recommendations, •and publish report

- Assess performance relative to market segment requirements
- Assess technology readiness / identify gaps
- •• Assess manufacturing capability and supply capacity
- •• Publish results

APEX INEMI BER-Free High Reliability PCB Project

Anticipated Outcomes

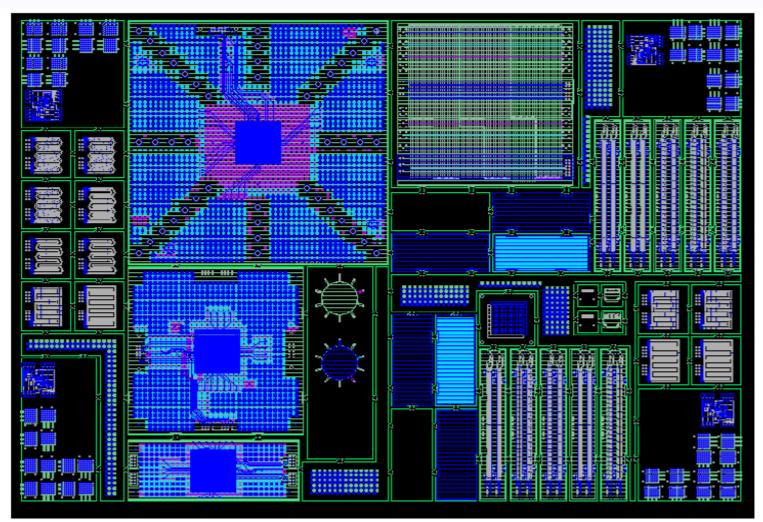
• Validate electrical and mechanical properties

Loss tangent and Dk modeling over required range of signal speed Mechanical performance validation for lead free assembly and rework •(delamination)

Critical Test Parameter Evaluation (CAF, IST, flex, etc.)

• Validate Board Level Reliability Capability

PCB Modulus / Thickness Impact on Mechanical Capability HF Board Level Assy / Rework Process Characterization Mechanical Characteristics (Pad Crater / Ball Pull etc) CTE Characteristics


SJR (Shock / TC etc) HF Component / HF PCB

APEX IN EML HFR-Free High Reliability PCB Project

- Focus is on Hi-Rel (Server) Market Segment Application Space
- PCB and PCBA components are HFR-free (Low-Halogen)
- Board Thicknesses are 0.093" & 0.125" (MEB's) & 0.116" (Agilent)
 - PCB Material should be LF compatible, low / med loss and HVM capable 8 BFR-free Materials Identified with 1 Halogenated Material as Control
 - All TV's have been completed and are being tested (estimated completion is end of Q4'11)

	MEB III	MEB III	nt
Thick	yer / 0.093	yer / 0.125	/ 0.116
ill Sizes	0mil / 12mil	I / 14	
tch	1.0mm	1.0mm	m

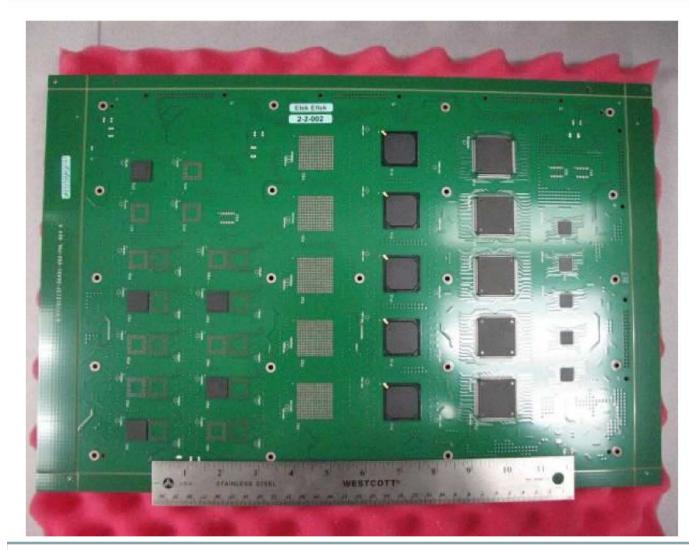
Intel MEB 93 – 18 Layer

- 22.25" X 15.75" in size
- Modular in design

•MEB125 – 24 Layer same footprint

•Stack-ups

MEB 125 Stack up


101210 1220	Description	Layer Type	Thickne	~~
Layer 1				mils
Layern	Prepreg	5		mils - 1 ply 2113 or 3313 or 2112
1 0		P		
Layer 2		٢		mils
	Core	_		mil core - 1 phy 2116
Layer 3	Unplated 1 oz Cu	S		mils
	Prepreg			mils - 1 ply 2113 or 3313 or 2112
Layer 4	Unplated 1 oz Cu	P		mils
	Core		4	mil core - 1 ply 2116
Layer 5	Unplated 1 oz Cu	S		mils
	Prepreg		3.5	mils - 1 ply 2113 or 3313 or 2112
Layer 6	Unplated 1 oz Cu	P	1.3	mils
	Core		4	mil core - 1 ply 2116
Layer 7	Unplated 1 oz Cu	S		mils
	Prepreg		4.5	mils - 2 ply 1080
Layer 8	Unplated 2 oz Cu	P		mils
	Core			mil core - 1 ply 2116
Laver 9	Unplated 2 oz Cu	P	2.6	mils
Layero	Prepreg			mils - 2 ply 1080
Lower 10	Unplated 1 oz Cu	S	4.0	mils
Layer to	Core	3	1.3	mil core - 1 ply 2116
1 4 4	Unplated 1 oz Cu	0		mils
		S		
	Prepreg	_		mils - 2 ply 1080
Layer 12	Unplated 2 oz Cu	P		mils
	Core	_		mil core - 1 ply 2116
	Unplated 2 oz Cu	P		mils
	Prepreg			mils - 2 ply 1080
Layer 14	Unplated 1 oz Cu	S	1.3	mils
	Core			mil core - 1 ply 2116
	Unplated 1 oz Cu	S		mils
	Prepreg		4.5	mils - 2 ply 1080
Layer 16	Unplated 2 oz Cu	P	2.6	mils
	Core		4	mil core - 1 ply 2116
Layer 17	Unplated 2 oz Cu	P		mils
- í	Prepreg			mils - 2 ply 1080
Laver 18	Unplated 1 oz Cu	S		mils
.,	Core			mil core - 1 ply 2116
Laver 19	Unplated 1 oz Cu	P		mils
	Prepreg			mils - 1 ply 2113 or 3313 or 2112
Laver 20	Unplated 1 oz Cu	S		mils
Layer 20	Core			mil core - 1 ply 2116
Linear 24	Unplated 1 oz Cu	P		mil core - 1 piy 2110 mils
Layer 21	Proprog	-		mils - 1 ply 2113 or 3313 or 2112
1 22	Prepreg	0		
Layer 22	Unplated 1 oz Cu	S		mils
	Core			mil core - 1 phy 2116
Layer 23	Unplated 1 oz Cu	P		mils
-	Prepreg			mils - 1 ply 2113 or 3313 or 2112
Layer 24	Plated 1/2 oz Cu	S	1.6	mils

APEX EXPO" 2012 CANI

TPS

	Description	Layer Type	Thickness
Layer 1	Plated 1/2 oz Cu	S	1.6 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
Layer 2	Unplated 1 oz Cu	P	1.3 mils
	Core		4 mil core - 1 ply 2116
Layer 3	Unplated 1 oz Cu	S	1.3 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
Layer 4	Unplated 1 oz Cu	P	1.3 mils
	Core		4 mil core - 1 ply 2116
Layer 5	Unplated 1 oz Cu	S	1.3 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
Layer 6	Unplated 1 oz Cu	P	1.3 mils
	Core		4 mil core - 1 ply 2116
Layer 7	Unplated 1 oz Cu	S	1.3 mils
	Prepreg		4.5 m ils - 2 ply 1 080
Layer 8	Unplated 2 oz Cu	P	2.6 mils
	Core		4 mils - 1 ply 2116
Layer 9	Unplated 2 oz Cu	P	2.6 mils
	Prepreg		4.5 mils - 2 ply 1 080
Layer 10	Unplated 2 oz Cu	P	2.6 mils
	Core		4 mils - 1 ply 2116
Layer 11	Unplated 2 oz Cu	P	2.6 mils
	Prepreg		4.5 m ils - 2 ply 1 0 80
Layer 12	Unplated 1 oz Cu	S	1.3 mils
	Core		4 mil core - 1 ply 2116
Layer13	Unplated 1 oz Cu	P	1.3 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
Layer14	Unplated 1 oz Cu	S	1.3 mils
	Core		4 mil core - 1 ply 2116
Layer 15	Unplated 1 oz Cu	P	1.3 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
Layer 16	Unplated 1 oz Cu	S	1.3 mils
	Core		4 mil core - 1 ply 2116
Layer 17	Unplated 1 oz Cu	P	1.3 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
Layer18	Plated 1/2 oz Cu	S	1.6 mils

Components	Quantity
BGA388T1.0C-DC264D	5
BGA208T.8C-DC170D	5
QFP120T30T3.2-DE-D	5
MStenst Information	5

•Type: Laser Cut

•Aperture Size:

-•BGA208 - Round 15.000 milBGA388 - Round 20.000 milQFP120 - Rectangle 15.000 mil x 75.000 mil

•QFN 68 . Oblong 9.000 mil x 37.000 mil

•Paste

•OM338PT (Type 3)

•Agilent Stack-up

annimillin i

APEX EXPO[®] 2012 Agilent Stackup

TPS

	Description	Layer Type	Thickness
ayer 1	Plated 1/2 oz. Cu	S	1.6mils
	Prepreg		3.5 <mark>mils - 1 ply 2113 or 3313 or 2112</mark>
ayer 2	Unplated 1 oz Cu	S	1.3mils
	Core		5 <mark>mil core - 1 ply 2116</mark>
ayer 3	Unplated 1 oz Cu	P	1.3mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
ayer 4	Unplated 1 oz Cu	S	1.3mils
	Core		5 <mark>mil core - 1 ply 2116</mark>
ayer 5	Unplated 1 oz Cu	S	1.3mils
	Prepreg		4.5mils - 2 ply 1080
ayer 6	Unplated 2 oz Cu	P	2.6mils
	Core		5mil core - 1 ply 2116
ayer 7	Unplated 1 oz Cu	S	1.3mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
ayer 8	Unplated 1 oz Cu	P	1.3mils
	Core		5mil core - 1 ply 2116
ayer 9	Unplated 2 oz Cu	P	2.6mils
	Prepreg		4.5 mils - 2 ply 1080
ayer 10	Unplated 1 oz Cu	S	1.3mils
	Core		5mil core - 1 ply 2116
ayer 11	Unplated 1 oz Cu	S	1.3 mils
_,	Prepreg		4.5 <mark>mils- 2 ply 1080</mark>
ayer 12	Unplated 2 oz Cu	P	2.6 mils
	Core		5mil core - 1 ply 2116
ayer 13	Unplated 1 oz Cu	S	1.3 mils
	Prepreg		3.5 mils - 1 ply 2113 or 3313 or 2112
ayer 14	Unplated 1 oz Cu	S	1.3mils
	Core		5mil core - 1 ply 2116
ayer 15	Unplated 2 oz Cu	P	2.6mils
-	Prepreg		4.5mils- 2 ply 1080
ayer 16	Unplated 1 oz Cu	S	1.3 mils
	Core		5mil core - 1 ply 2116
ayer 17	Unplated 1 oz Cu	S	1.3 mils
	Core		3.5 mils - 1 ply 2113 or 3313 or 2112
ayer 18	Unplated 1 oz Cu	P	1.3 mils
	Core		5mil core - 1 ply 2116
ayer 19	Unplated 1 oz Cu	S	1.3 mils
	Prepreg		3.5mils - 1 ply 2113 or 3313 or 2112
ayer 20	Plated 1/2 oz Cu	S	1.6mils

•Assembly Conditions at Celestica

18 layer 0.093" MEB:

- 6 panels @ 245C 6X
- 6 panels @ 245C 10X
- 6 panels @ 260C 6X
- 6 panels @ 260C 10X
- 6 panels no reflow conditioning

24 layer 0.125" MEB:

• 6 panels @ 245C 6X

Complete

- 6 panels @ 245C 10X
- 18 panels no reflow conditioning

20 layer 0.116" Agilent:

Complete

 $\bullet\,8$ panels assembled with components @ 245C

Complete

- 5 panels bare @ 245C 6X
- 5 panels no reflow conditioning

APEX INEMI BER-Free High Reliability PCB Project •MEB Test Status

Material / Stackup	ļ	4	E	3	(C		D	E	Ξ	F	-	(3				H htrol)
Olackup	.093	.125	.093	.125	.093	.125	.093	.125	.093	.125	.093	.125	.093	.125	.093	.125	.093	.125
IST - Intel	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
CAF - Doosan/Intel	С	С	С	С	С	С	С	С	С	с	с	С	С	С	С	С	с	с
Flex Mod - Doosan	С	С	С	С	С	С	С	С	С	с	С	С	С	С	С	С	С	с
Tg / z- CTE - Doosan	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Solder Float - ITEQ	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Dk & Total Loss up to 30GHz - Intel	С	С	С	С	С	С	С	с	С	с	С	С	С	С	С	С	С	с
Moisture Diffusivity Insertion Loss - Intel	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1	3/1
Drill Reg - Intel	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
HATS - IBM	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Board Side Ball Pull - Intel	С	С	С	С	С	С	С	С	С	с	с	С	С	с	С	С	с	С

•Moisture Diffusivity testing to complete in March by Intel

• IST IPC TM-650-2.6.26, 10% resistance change cycled RT to 150C to a maximum cycle count of 1000.

•CAF IPC-TM-650-2.5.25.1

- 1. Stabilize samples for 24 hours at 23C and 50%RH
- 2. Perform initial measurements
- 3. Precondition samples for 96 hours at test temp and humidity
- 4. Apply bias and perform Insulation Resistance (IR) measurements for 1000 hrs

•The testing differences at Doosan and Intel were as follows:

Test Site	Test Temp	Test Humidity	Test Voltage
Doosan	65C	85%	100V DC
Intel	85C	85%	80V DC

- Flex Modulus ASTM D790 procedure. Test samples in X and Y direction Instrument: Instron 4202
 - •Specimen dimension: 75 mm X 32 mm
 - •Fixture: 3 point bending
 - •Span: 38.4mm
 - •Crosshead speed: 0.45mm/min

•Tg/ Z-CTE IPC-TM-650-2.4.24

- Instrument: TMA 2940
- •Specimen dimension: 6.35mm X 6.35mm
- •Mode: Expansion
- •Preconditioning: for 2hrs at 105°C
- •Program: Ramp 10°C/min to 200°C, isothermal 5min, and ramp 5°C/min to 280°C

•Solder Float IPC TM-650-2.6.8 Test Condition A (288C for 10 sec) repeat to 6X

•Dk and Total Loss . S parameter extraction

- •Instrument: Agilent E8364B Performance Network Analyzer
- Specimen dimension: 5 mil nominal trace, 5 inches long
 Test structures: Microstrip (Layer 1 to 2, no soldermask), Microstrip (Layer 1 to 2
- soldermask), and Stripline (Layer 2 to 1 and 3)
- •Frequency Range: 10MHz to 50GHz

•Moisture Diffusivity . S parameter extraction

- Instruments: Espec ECL 2CA Temperature Humidity chamber and HP 8510C VNA
 Test structures: 5 mil nominal trace as microstrip and embedded microstrip every layer Frequency Range: 10MHz to 20GHz
- Test Conditions: 1) initial readings, 2) soak at 35C/85% RH until readings reach asymptotic state, 3) dry bake at 105C/0%RH until readings reach asymptotic state, 4) soak at 85C/85%RH until readings reach asymptotic state, and 5) dry bake at 105C/0%RH until readings reach asymptotic state.

APEX O INEMI BER-Free High Reliability PCB Project •MEB Test Parameters

•Drill Registration Electrical test Beep test coupon by layer

•HATS Modified IPC TM-650-2.6.7, 10% resistance change cycled -45C to 145C to a

•maximum cycle count of 500.

•Instrument: ITRS HATS Tester

•Specimen: In-line and offset 10 mil via daisy chains at 18 and 22 mil via to via spacing

•Ball Pull IPC 9708 Test Standard (Ball Pull Method).

- •Instrument: Dage 4000 with 5Kg Ball Pull cartridge and 750um jaw
- •Specimen: 20 mil SAC 405 Ball on 16 mil nominal diameter PCB pad
- •Test Parameters: 23psi clamp pressure, 1 sec jaw closing time, 5mm/sec pull speed

APRIMI BFR-Free High Reliability PCB Project Agilent Bd											
MATERIAL	А	В	с	D	E	F	G	I	H (Control)		
Monotonic Bend and FA . IST	Complete										
HALT and FA - HP	Update										
Aging - HP	Complete										

HALT testing & FA update: Intel shipped 1 of each material type (aged board) to HP ۲ for initial testing week of Feb 20th. Completion Date TBD.

 Aging for the Agilent RTV boards was performed at HP with the following •equipment / conditions :

•Equipment: Thermotron Environmental Test Chamber

•Model: SMX-64-705-705

•Capacity: 64 ft³

•Capability: -87° C - 190° C; 20% - 95% RH •Aging conditions: Isothermal @ 85° C w/humidity @85%RH, stressed for 496 hours (20.7 days)

•Monotonic Bend : Modified IPC 9702 Test Standard (Bare Board Test)

- •Equipment: Load Frame
- •Strain Gauge: KYOWA KFG-02-120-C1-11L3M2R
- •Gauge Specifics: Factor 2.18 + 1%, Resistance 119.6 \pm 0.4 Ω
- •Test Conditions:
 - •Global PWB strain-rate:5000µstrain/sec
 - •Load Span:100 mm
 - Support Span: 200 mm
- •Monitor resistance of nets 1 and 4 for failure (open circuit)

•HALT Testing Profile Conditions:

- 1. Ambient temp and no vibration (starting point) 25C
- 2. Vibration ramp step with dwell each step 2.4 GRMS increase with 5 minute dwell
- 3. Cold ramp step with dwell each step -3C decrease with 15 minute dwell
- 4. Hot ramp step with dwell each step 3C increase with 15 min dwell
- 5. Return to ambient ramp with no dwell
 - 6. Repeat steps 2 through 5 for 25 steps to 60 GMRS, -50C, and 100C endpoint. Monitor package/ PCB daisy chains for failure.

•Milestone Date

- Complete all remaining MEB testing March 2012
- Complete testing on Agilent Board Addendum
- Write Final report April, 2012
- iNEMI Webinar May, 2012

www.inemi.org

Email contacts: Jim McElroy jmcelroy@inemi.org Bob Pfahl bob.pfahl@inemi.org Jim Arnold jim.arnold@rissastudios.com

