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Abstract 
In this study, the question was how to perform statistically reliable robust- ness tests for the non-contact drop-on-demand 
printing of functional fluids, such as solder paste and conductive adhesives. The goal of this study was to develop a general 
method for hypothesis testing when robustness tests are performed. The main  problem was to determine if there was a statistical 
difference between two means or proportions of jet  printing devices. In this study, an example of jetting quality variat ion was 
used when comparing two jet printing ejector types that differ slightly in design. We wanted to understand if the difference in 
ejector design can impact jetting quality by performing robustness tests. and thus answer the question, "Can jetting differences 
be seen between ejector design 1 and design 2"? 
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Introduction 
Surface mounting technology has come to dominate the production of commercial electronics over the last thirty years. The 
connection of components to metallic pads using a metallic alloy delivered onto the printed circuit board (PCB) as a suspension 
and a reflow step is the dominant methodology for electronics production. The demands on volume delivery and positioning 
accuracy for solder paste deposits are increasing as the size and complexity of circuits continue to develop in the electronics 
industry. Board designs that include advanced BGAs, CSPs with 0.4 mm and 0.3 mm pitch, as well as simpler 01005 and 
008006 components, raise the bar for positioning demands and volume delivery and repeatability for solder paste deposits. 
According to the 2016 iNEMI roadmap placement accuracy for these kinds of components will reach 6 sigma placement 
accuracy in X and Y of 30 um by 2019[1]. This level of placement accuracy for components must be accompanied by a related 
accuracy for the deposit of solder paste and related flu ids in order to fulfill the related increasing demands on interconnect 
reliability in increasingly demanding environments with respect to temperature extremes, mechanical stresses and/or 
production limitations[2][3]. Among the alternatives for the deposition of solder paste and other fluids on a PCB is the 
non-contact deposition technology jet printing, which offers advantages concerning precise volume repeatability, software 
control and local volume control. In this study, the question was how to perform statistically reliable robustness tests for the 
non-contact drop-on-demand printing of functional fluids, such as solder paste and conductive adhesives. 

 
Jet printing 
Jet printing comprises the non-contact deposition of a functional material through the transfer of momentum from a piston to 
the material, in this case solder paste. Jet printing on the fly is the capability of jet printing material while in motion. To jet 
solder paste reliably, the transfer of momentum must be made while minimizing the risks of deforming the metal alloy particles 
to eliminate the coining  effect, thus resulting in  continuous jet printing over time. A possible method of transferring  momentum 
without contact is through very high accelerations. Coupling high accelerations with precise volumetric control enables the jet 
printing of a wide range of deposit sizes with a single hardware setup, see Figure 1. 

 

 
Figure 1: A schematic of a solder paste jet with an auger that feeds solder paste to the jet printing chamber and a piston 

that transfers momentum to the solder paste. 
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By controlling the material fed into a jet printing chamber, a fixed volume is created that is the basis of the jet printing process. 
The volume that has been transferred into the chamber is forced through the nozzle in a single shot by the volumetric 
displacement provided by the piezo un it. The chamber is then refilled before the next eject ion. Using this principle, a variable 
volume of material depositions can be created without changing the frequency of the jet because the solder paste volume is 
precisely controlled through the feed of material into the chamber [4].There are physical limitat ions of the mechanics which 
define the functional range of this apparatus, but these are well defined and enable a wide range of outputs with a single setup at 
a constant speed of up to 500 Hz. 
 
Jet printing  solder paste not only allows for single deposit variation  of vo lume, but also enables mult iple pass possibilities to 
customize solder paste deposits. Customization can be done with respect to volume, paste height, shape, position and pad 
coverage which can be seen in Figure 2. 

 

 
Figure 2: Examples of the control of paste height (2.5 D printing), pad coverage and volume. 

 
The accuracy and repeatability of deposits with respect to volume, d iameter, and positioning is of primary importance for any 
application of the technology. Therefore, an efficient and statistically sound evaluation of the reliab ility of jett ing robustness is 
necessary. 
 
The goal of this study is to develop a general method for hypothesis testing when robustness tests are performed. The main 
problem is to determine if there is a  statistical difference between  two means or proportions of jet printing devices. In this study, 
an example of jetting quality variation is used when comparing two  jet p rinting ejector types that differ slightly in design. We 
would like to understand if the difference in ejector design can impact jetting quality by performing robustness tests. and thus 
answer the question, "Can jetting differences be seen between ejector design 1 and design 2"? 

 
Compute differences of means when performing hypothesis testing 
When comparing different means of material quantities obtained from the measurement of material depositions, we can use the 
relation 

 
  (1) 

 
Note that Equation 1 is used to work with continuous variables. It is assumed that each observation is independent and 
identically distributed, and  and . Note that  represents the sample mean, and  represents the 
true population mean, if we were to jet an  infin ite number o f deposits with d ifferent ejectors, which  is obviously impossible.  
is the true population variance, which is also unobservable in this case, and  is the number of observations (deposits) in each 
test. Since the number of observations is large, the population variance can be approximated with the sample variance, . The 
transformation in Equation 1 g ives a -value, which  can be used to evaluate if we reject our hypothesis or not. In most of the 
experiments, we will in itially formulate that the difference between the two population means is zero, i.e. the means are equal. 

 
Equation 1 can be understood intuitively as a sequence of random variables that converge into a standard normal distribution 
with mean  and variance . The null hypothesis is formulated as:  There is no difference between the means. The alternative 
hypothesis is often formulated as:  There is a difference between the means. A large difference between the observed means, 
when subtracting the difference between the means under the null hypothesis (which we assume to be zero in most cases), 
divided by the square root of their sample variances implies that there is a high probability of a difference between the means. 
Therefore, the null hypothesis is rejected if -values are obtained that are either too large or too small. The -values are 
selected based on the significance level , the probability of reject ing the null hypothesis given that it is true, which is 
commonly referred to as critical values. Two very common significance levels are  and , and their corresponding 
critical -values are 1.96 and 2.326, respectively, if a  two-sided alternative hypothesis is formulated and has more than 1000 



observations. Note that the null hypothesis is rejected if . The -values are used because the population variance 
 is estimated with the observed sample variance . 

 
Hypothesis testing 
 
Testing our hypothesis 
We now would like to develop a general method for testing if there is a statistical difference between the means of two sets of 
measurements in the a test of process robustness. A formal approach is 

 
1. Null Hypothesis:  There is no difference between the jetting quality variation of ejector design 1 and ejector design 

2. 
2. Alternative hypothesis:  There is a significance difference. 
3. Test statistic: Equation 1 is used as our test statistic, but replace the population variance , with the sample variance 

. 

4. Rejection region: Reject  if , where  is a critical value, based on the chosen significance level.  
is the statistic which is obtained by using Equation 1. 

Problems with our hypothesis tests 
A problem that arises when using the hypothesis tests for continuous variables is if the mean of a quantity varies for iterations of 
identical jetting jobs, i.e. there is a significant difference between means for different jobs, although no change has been 
implemented in the test. In the tests described below, a generic ball grid array (BGA) board pattern is used that includes 96 
individual 360 pad 0.4 mm p itch BGAs. The BGA pattern used on the test board is shown in Figure 3. The pattern was jetted on 
photo paper placed on a blank FR4 carrier measuring 210 by 297 mm. Diameter (area) measurements were made using a 
standard camera system in the jetting device, while vo lume measurements were made using a commercial optical solder paste 
measurement device. Goal diameters for the BGA deposits ranged between 210 and 270 m. 

 

 
Figure 3: Generic 360 pad BGA pattern used in the jetting job. 

 
All controllab le variab les have been held fixed between the tests, except the variable of interest. The reason for a significant 
difference in means between different jobs is unknown, but a p robable exp lanation is that there may be many other variables 
that effect the resulting deposition, which  the experimenter can not control. Ideally, we would like to have the deposits as 
homogeneous as possible, that is, observations should have the same characteristics throughout the jetting series, when the 
same ejector is used in the jetting job, i.e. deposits are produced with the same goal deposit size. Instead, something interesting 
is observed. There is no visual drift by looking at the plots, but the -values are significant when comparing different jobs from 
the same ejector. The sign of the -values appear to be random, or there is at least no observable trend when visualizing the 
-values. Figures 4 and 5 illustrates this behaviour in the jetting process, based on the BGA observations. Figures 4 and  5 shows 

all observations in the BGA job for the diameter and volume, respectively. 
 



 
Figure 4: Pairwise t-tests of BGA jobs where we tested :  There is no significant difference between the different 

jobs versus :  There is a significant difference between the mean diameters of di fferent jobs. A 5%  significance level 
is used in the tests. 

 

 
Figure 5: Pairwise t-tests of BGA jobs with the same ejector where  was tested. :  There is no significant 
difference between the different jobs versus :  There is a significant difference between the mean volumes of 

different jobs. A 5%  significance level is used in the tests. 
 
When comparing different deposit sizes, it is of interest to determine if there is a significant difference between the means for 
each of our deposit sizes. We would also like to know the relat ionship of the difference in means, i.e . if one ejector design 
generates larger or smaller values compared to a second ejector design. 
 
Another problem that arises in our hypothesis tests is that outliers may affect the mean, i.e. observations that are distant from 
other observations. In general, one should be carefu l to remove outliers if the cause of the outliers is unknown. Since we assume 
that the jetting process within a job is a stochastic process, with mean around the true mean and constant variance, one could in 
consultation with the experimenter remove outliers if we know that the outliers are random occurrences, equally likely to occur 
in each of the tests. In Figure 4 and 5, it can be seen that some observations are distant from the the rest of the observations in the 
BGA job. 
 



 
Figure 6: Plot of the a) diameter and b) volume for two identical BGA jobs 

 
This relation can be used to develop a formal method to determine if there is a significant d ifference between means in a 
robustness test. 
 
Formal method for testing 
We now wish to develop a method for hypothesis testing to determine if the means of a robustness test differ significantly. 
Since it is assumed that the jetting process is a stochastic process, we want to minimize the risk of rejecting the null hypothesis 
due to randomness in data, as well as other confounding variables that may affect the result. 
 
We are interested in investigating if there is a significant difference between means in a robustness test for each deposit 
diameter. In this case, we want to compare if the diameters and volumes for deposits with goal diameters of m, m, 

m, m and m differ between the two ejector designs. 
 
The method defined in  Section  3 may be used again to perform our hypothesis tests between the ejector designs when 
comparing deposit sizes. In order to avoid randomness in the data, a restriction is added to the test. In order to minimize the risk 
of having randomness in our data affecting the -values, we would like that all the -values must be significant fo r the d ifferent 
deposit sizes, as well as having the same sign for the -values. 
 
Figure 7 shows that all the means for the second test are higher than those for the first test. When performing -tests for the 
different ejector designs, we find that all means for each deposit size comparison differ significantly from each other. 
 
It is also important that the order of jetting does not affect the outcome. Therefore, the same experiment is repeated using 
another ejector. In the new experiment, the order of the experiments is switched, i.e. reverse the shooting order for each test. 

 

 
Figure 7: Plot of the volume means for the different ejector designs, when comparing the pairwise deposit sizes. 



 

 
Figure 8: Pairwise -values for the mean volumes. It is found that the null hypothesis can be rejected, i.e. reject that 

there is no difference between the means at 1%  significance. This is because the magnitude of all the -values are larger 
than our critical value, and all the -values have the same sign. 

 
Hypothesis testing with the p-value approach 
In order to compare if there is a significant difference between missing volumes, i.e. deposits that are smaller than a certain 
threshold, the Central Limit Theorem (CLT) can not be used since the probability of missing is very low (close to zero). There 
is also a much easier way to perform hypothesis tests when we work with sums of binary variables. Note that a missing volume 
is a Bernoulli trial, with probability of success (missing) being close to zero. The probability of success for a Bernoulli variable 
is 

 
  (2) 

 
The sum of the Bernoulli trials fo llow a Binomial d istribution with parameters , and the sum of the number of missing 
volumes  is distributed as 

 
  (3) 

 
The expected value of th is distribution is  and variance . Note that , i.e. a simple average of the b inary 
outcomes. 
 
The value approach involves determin ing the probability of obtaining a more ext reme statistic, given that the null 
hypothesis is true. If one has data from previous tests of the missing volumes g iven a certain solder paste, then the probability of 
missing can be estimated with the obtained statistic from the previous tests. Otherwise, one can assume that the null hypothesis 
in this case is the missing estimate obtained in the first test. Here, we could say that we assume that the estimate obtained from 
the first test is the true parameter value. We compare the probability of obtaining our second estimate, given that the first 
estimate is true, by calculating the probability of observing a more ext reme statistic in the direction of the alternative 
hypothesis. If the value is small (less than ), it is unlikely that the tests have the same parameter values, and the null 
hypothesis is rejected. 
 
Let us first understand that Binomial d istribution can be used to compare missing volumes. Recall from Equation 2 that a 
random deposit is a Bernoulli experiment with two  outcomes, success or failure (success can also be something bad, in this case 
missing). In order to understand the concept of the Bernoulli variables, let us consider the example of aco in. The probability of 
heads is , and tails is , since it  is equally likely for each outcome. If we use the Bernoulli formula and are interested in 
the probability of success, we get 
 
 



 
  
 

The probability of no success (tails) is 
 
  
 

If  independent Bernoulli trials are performed, the sum of the number of successes turns out to follow the Binomial 
distribution. If the coin is flipped  times, the probability of  for the different outcomes are now 

 
  

 
 

 
  

 
  
 

Using the Binomial theorem, the reader can verify that the formula 
 
  
 

gives the same result. Another way of thinking on the sum of the number of successes is to consider it as the joint probability by 
multiplying the Bernoulli trials together 

 
  
 

Since the Bernoulli trials are independent, the trials may be mult iplied in order to get the jo int probability d istribution, but the 
binomial coefficient, , must also be added in o rder to calculate the jo int probability of the number of successes, and not only 

a specific order o f the outcome. Recall the example of flipping the coin  times, where not only the outcome must be 
considered, but also the number of ways that a specific outcome can occur. 

 
Begin  by considering the example of calculat ing the -value, where we assume that we have performed  a robustness test. In the 
first parameter settings, 300,000 deposits were jetted, and the number of missing volumes were . After 
implementing a change in the ejector, another series of 300,000 deposits were jetted with 8 missing. It is assumed that the 
estimate obtained in  the first series is the true parameter value. Hence,  and . We 
would now like to calculate the probability that 

 
  
 

We can calculate this event by 
 
  

 
  

 
  

 
  
 

Using a computer, the value is in this case 0.6360, rounded to four digits. From Figure 9, it is observed that approximately 
 of the observations are outside the interval , and hence, we can not make any conclusions about the sample 

since the value is above our significance level  (0.05 or 0.01). 
 



 
Figure 9: Simulation of the Binomial distribution with parameters , . 

 
 

How many observations do we need? 
In the field of statistics, one would like to have as many observations as possible in order to draw conclusions about the data. In 
statistics, as well as many other fields of science, one can  never say that "we know that something is true" or "accept the 
alternative hypothesis". Theories may only be falsified by rejecting the null hypothesis, but conclusions can not be reached 
about the alternative hypothesis. 

 
One rule of thumb when using the central limit theorem 

 
  
 

is to have at least 30-50 observations. The uncertainty decreases when the sample size is increased. We seek to obtain as much 
informat ion as possible at minimum cost. This is commonly referred to as experimental design. Let us now develop a common 
method for selection of sample sizes in  our experiments. Let us go back to the question, How many measurements should be 
included in the sample?. The experimenter can indicate the desired accuracy by specifying a bound on the error of estimat ion. 
Suppose that the desired deviation from the true mean  is , with probability 95%. Recall that the critical -value was 1.96 . 
Since approximately 95% of the sample means will lie within  of  in repeated sampling, we have 

 
  
 

Let us approximate the min imum sample size g iven a certain accuracy. The mean of the diameter in previous tests for 210 m 
is 180 m, and mean for the volume for the same deposit-size is 1.2 n l. The sample variances obtained in a previous test for the 
diameter and volume is 45.45 m and 0.0162 nl, respectively. Tables 1 and 2 show how the sample size changes as the desired 
precision in our estimates is increased. 

 
Table  1: Selection of sample size based on diameter data (210 m) 

 (deviation from the true mean) [ ] 5 2.5 1 0.5 0.025 
Sample size [1] 7 28 175 699 279 362 

 
Table  2: Selection of sample size based on volume data (210 m) 

 (deviation from the true mean) [ ] 0.3 0.2 0.1 0.05 0.01 
Samplesize [1] 1 2 7 25 623 



 
Summary 
It is necessary to be careful when  calculat ing the minimum number of observations required given a certain  accuracy. As 
mentioned earlier, the central limit theorem deals with independent and identically distributed random variables, although the 
latter condition can sometimes be relaxed. One problem that arises throughout the statistical tests is that there are many 
variables that the experimenter can not control, such as the state of the system, i.e. if the system is unstable during a certain 
period of jetting, and stable during another period of jetting. Different states of jetting could be modelled and included in a 
subsequent effort. In previous tests, where jet printing has been tested, 300 000 deposits have been enough to reject the null 
hypothesis. Although the number of observations could easily be reduced from a theoretical perspective as illustrated in the 
tables, one has to take these other factors, such as uncontrollable variab les, dependence of observations etc., into account when 
designing the experiment and choosing the sample size. 

 
Another important subject when designing an experiment, although it might seem obvious to many, is to ho ld as many variables 
fixed between the experiments in order to avoid confounding variables to affect the outcome of the experiment. For instance, 
when testing jet printing with ejectors with specific design differences, one would like to have a majority of test factors constant 
for both designs, for example solder paste, actuation profile et cetera. Holding all controllable variables fixed except the 
variables of interest between tests may increase the internal valid ity of the experiment. Also, since the uncontrollable variables 
in the jetting process are assumed to be random, we assume that our result will converge to some value as the number of 
observations is increased, while using different ejectors. 
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Background
Deposition of material has to fulfill rigorous demands of customers 
concerning

• volume reliability
• positioning accuracy
• presence (sic!)

How many shots are required to ensure robust results when 
changes can occur at the ppm level?



Industry demands



Non-contact deposition



Non-contact deposition
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Add-on strategies



Non-contact deposition

0.3 mm pitch



Deposition trajectories
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Statistics

Central Limit Theorem
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Hypothesis testing
Statistics

H0: There is no significant difference between the different jobs versus HA: There is 
a significant difference between the mean volumes of different jobs.

H0: There is no significant difference between the different jobs versus HA: There 
is a significant difference between the mean diameters of different jobs.



Statistics

Formal testing : ’identical’ BGA tests



Statistics

Bernoulli test



Statistics

Central Limit Theorem



Statistics

Hypothesis testing for two ejector designs
Pairwise t-values for the mean volumes



Statistics
Simulation of Binomial distribution



Statistics

Sample size



Summary
- Central limit theorem is used to estimate necessary sample size
for non-contact deposition



THANK YOU!!
Any Questions?




