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Abstract 
Status of flip chip technology such as wafer bumping, package substrate, flip chip assembly, and underfill will be reviewed in 
this study. Emphasis is placed on the latest developments of these areas in the past few years. Their future trends will also be 
recommended. Finally, the competition on flip chip technology will be briefly mentioned. 

Introduction 
The flip chip technology was introduced in the early 1960s for solid logic technology, which became the logical foundation 
of the computer line [1]. Figure 1(a) shows the first flip chip with three terminal transistors, which are Ni/Au plated Cu balls 
embedded in a Sn–Pb solder bump on the three I/O pads of transistor. A Cr–Cu–Au adhesion/seed layer is deposited between 
the Al–Si contact pads on the Si chip and the solder bump. Figure 1(b) shows the first flip chip assembly (three chips) on a 
ceramic substrate. 
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Figure 1 - (a) First flip chip component with 3 terminal transistors. (b) First flip chip assembly (3 chips) on a ceramic 

substrate 

As the I/Os increase, the Cu ball is replaced by solder bump. The controlled-collapse chip connection (C4) technology [2] 
utilizes high-lead solder bumps deposited on wettable metal terminals on the chip and a matching footprint of solder wettable 
terminals on the substrate. The solder-bumped flip chip is aligned to the substrate, and all solder joints are made 
simultaneously by reflowing the solder. 

Today, the applications of flip chip technology have been extended to [3, 4, 5] chip-to-chip, face-to-face, and face-to-back. 
Figure 2(a) shows a specific package [6]. It can be seen that the package is actually defined by two levels of nesting die. The 
three daughter dies are flip-chip attached to the larger mother die which is then attached to the largest grandma die. The 
grandma die is then flip-chip attached to the package substrate. The bumps between the daughter dies and the mother die are 
microbumps (Cu-pillar with solder cap). C4 bumps are used between the mother die and grandma die, and between the 
grandma die and package substrate. Figure 2(b) shows 3D IC integration technology for the DDR4 (double data rate type 4) 
DRAM (dynamic random access memory) of the 128GB RDIMM (dual inline memory module). It can be seen that the 
DRAMs are bonded (stacked) with microbumps and NCF (non-conductive film). 

Flip chip technologies have been used extensively for the processors of mainframe computers, servers, personal computers, 
notebooks, smartphones, tablets, games, etc., the application specific integrated circuits (ASICs) of networking, 
telecommunications, etc., and the memories of data storage devices, etc. Most of the flip chip assemblies are mass reflowed. 
Recently, because of the requirements of higher functionalities of the chips and shrinking the chips’ area, the number of pin-
outs of the processors, ASICs, and memories increases and their pitch (or the spacing between the pin-out pads) decreases. 



Also, because of the trends of smaller form factors for mobile (e.g., smartphones and tablets) and portable (e.g., notebooks) 
products, the thickness of the chips and package substrates must be as thin as possible. Higher pin counts, tighter pitches, 
thinner chips, and thinner package substrates lead to the necessity of the thermocompression bonding (TCB) method for flip-
chip assemblies. In this study, besides mass reflow, various TCB techniques are mentioned. 
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Figure 2 - (a) 3D IC packaging and (b) 3D IC integration 

 
Recent advances in high-density and low-cost package substrates have promoted more flip chip applications. In this study, 
the organic build-up substrate, through-silicon via (TSV)-interposer, TSV-less interposer, coreless substrate, bump-on-lead 
(BOL), and embedded-trace-substrate (ETS) will be discussed.  
 
In order to enhance the solder joint reliability of flip chip assemblies, underfill is a must, especially for organic package 
substrate. In this study, the pre-assembly underfill such as the no-flow underfill (NUF), nonconductive paste (NCP), and 
nonconductive film (NCF) will be discussed. Also, the post-assembly underfill such as the capillary underfill (CUF) and 
molded underfill (MUF) will be examined. Since wafer bumping is the mother of flip chip technology, it will be briefly 
mentioned first.  
 
Wafer Bumping  
There are many ways to perform the wafer bumping (at least 12 are shown in [7]), and the most common method is by 
electrochemical deposition (ECD) or electroplating [8]. Stencil printing method [9, 10] is also used for wafer bumping but it 
will not be presented herein. 
 
C4 Bumps. Usually the pad size is equal to 100µm and the target bump height is equal to 100µm. After redefining the 
passivation opening (usually it is not required), either Ti or TiW (0.1–0.2µm) are sputtered over the entire surface of the 
wafer first, followed by 0.3–0.8µm of Cu. Ti–Cu and TiW–Cu are called under bump metallurgy (UBM). In order to obtain 
100µm bump height, a 40µm layer of resist is then overlaid on the Ti–Cu or TiW–Cu and a solder bump mask is used to 
define (ultraviolet exposure) the bump pattern as shown in steps #1–4 in Figure 3. The opening in the resist is 7–10µm wider 
than the pad opening in the passivation layer. A 5µm layer of Cu is then plated over the UBM, followed by electroplating the 
solder. This is done by applying a static or pulsed current through the plating bath with the wafer as the cathode. In order to 
plate enough solder to achieve the target (100µm), the solder is plated over the resist coating by about 15µm to form a 
mushroom shape. The resist is then stripped off and the Ti–Cu or TiW–Cu is removed with a hydrogen peroxide or plasma 
etching. The wafer is then reflowed with flux, which creates smooth truncated spherical solder C4 bumps, due to surface 
tension as shown in steps #5–8 on the upper right-hand side of Figure 3 [7, 8]. 
 
C2 (Cu-Pillar with Solder Cap) Bumps. Because of higher pin-count and tighter pitch (smaller spacing between pads), 
there is a possibility of shorting the adjacent solder C4 bumps. Wire interconnects [11] and Cu-pillar with solder cap [12, 13] 
can be a solution. The fabrication process is basically the same as that of the C4 bumps except electroplating the Cu instead 
of solder as shown in step #5 on the lower right-hand side of Figure 3. It is followed by electroplating the solder cap and then 



reflowing the solder with flux. Because the solder volume is very small compared with the C4 bump, the surface tension is 
not enough to perform the self-alignment of the Cu pillar with the solder cap bump and therefore, it is sometimes called a C2 
(chip connection) bump. Besides being able to handle finer pitch, C2 bumps also provide better thermal and electrical 
performances than C4 bumps. This is because the thermal conductivity (W/m K) and electrical resistivity (µΩm) of Cu (400 
and 0.0172) are superior than those (55–60 and 0.12–0.14) of solder. 
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Figure 3 - Wafer bumping by ECD or electroplating method for C4 and C2 bumps 

 
Flip Chip Package Substrate 
In the past few years, tremendous efforts have been devoted to enhance/advance the capabilities of the conventional low-cost 
build-up organic package substrates by increasing the number of build-up layers, fabricating thin-film layers on top of the 
build-up layer, shrinking the dimensions of the metal line width and spacing, reducing the pad size and pitch, eliminating the 
core, making the BOL, and laminating the ETS. For silicon substrates, first come with the TSV-interposer and the future 
trend is for TSV-less interposer. Ceramic substrate will not be discussed herein.  
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Figure 4 - (a) Build-up package substrate for flip chips. (b) Build-up substrate with TSV-interposer for flip chips 

Surface Laminar Circuit (SLC) Technology. 
Almost 25 years ago, the SLC technology was invented [14, 15], which formed the basis of today’s very popular low-cost 
organic package substrates, Figure 4(a), with build-up layers vertically connected through microvias [16] to support flip 



chips. There are two parts of the SLC technology: one is the core substrate and the other is the SLC for the signal wiring. The 
core substrate is made by the ordinary glass epoxy panel. However, the SLC layers are sequentially built up with the 
dielectric layers made of photo sensitive epoxy and the conductor plane of copper plating (semi-additive technique). In 
general, a package substrate with twelve layers (e.g., two core-layers and ten build-up layers (5-2-5)) and 10µm-line width 
and spacing is more than adequate to support most of the chips. 
 
TSV-Interposers. In the past few years, because of the very high-density, high I/Os, and ultrafine pitch requirements such as 
the sliced field programmable gate array (FPGA), even a twelve build-up layers (6-2-6) package substrate is not enough to 
support the chips and a TSV interposer, Figure 4(b), is needed [17, 18]. For example, the left-hand side of Figure 5 shows the 
sliced FPBG chip on wafer on substrate (CoWoS). It can be seen that the TSV interposer has four top RDLs (redistribution 
layers): three Cu damascene layers and one aluminum layer. The 10,000+ of lateral interconnections between FPGA chips 
are connected mainly by the RDLs of the interposer.  
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Figure 5 – CoWoS (left) and SLIT (right)  

 
TSV-Less Interposer: Silicon-Less Interconnect Technology (SLIT). So far, TSV-interposer is very expensive [3-5]. In 
order to lower the cost, enhance the electrical performance, and reduce the package profile, in 2014 a TSV-less interposer 
was proposed for the sliced FPGA chips called SLIT [19]. The right-hand corner of Figure 5 shows the new packaging 
structure. It can be seen that the TSVs and most of the interposer are eliminated and only those four RDLs are kept to 
perform, mainly, the lateral communication of the sliced FPGA chips. Depending on the line-width/spacing of RDLs’ 
conductive wiring, the fabrication method of RDLs can be either by using a polymer for the dielectric layer and ECD Cu for 
the conductive wring (line-width/spacing ~5µm), or by using plasma enhance chemical vapor deposition to make the SiO2 
dielectric layer and Cu damascene + chemical–mechanical polishing (CMP) to make the conductive wring (line-
width/spacing <5µm). Figure 6 schematically shows the cross section of the SLIT.  
 
TSV-Less Interposer:  Non-TSV Interposer (NTI). In 2016, a similar paper was published [20] with more characterization 
results such as warpage data and called it non-TSV interposer (NTI). 
 



TSV-Less Interposer: Silicon Interposer-Less Integrated Module (SLIM). In 2015, a very similar technology to SLIT 
was announced called SLIM [21]. 
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Figure 6 - SLIT 

 
TSV-Less Interposer: Embedded Multidie Interconnect Bridge (EMIB). In September 2014, an EMIB [22] was proposed 
to replace the TSV-interposer. The lateral communication between the chips will be taken care of by the silicon embedded 
bridge and the power/ground and some signals will go through the vias of the organic package substrate to the PCB as shown 
in Figure 7 [23]. There are two major tasks in fabricating the organic package substrate with EMIB. One is to make the EMIB 
and the other is to make the substrate with EMIB. For making the EMIB, first build the RDLs (including the contact pads) on 
a Si-wafer by either polymer + ECD or Cu damascene + CMP methods. Then, thin down the wafer to ~60µm. Finally, attach 
the non-RDL side of the Si-wafer to a die-attach film and then singulate the Si-wafer.  
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Figure 7 - High bandwidth communications between the FPBA and HBMs by EMIB 



For making the substrate with EMIB, first place the simulated EMIB with the die-attached film on top of the Cu foil in the 
cavity of the substrate, Figure 8(a). It is followed by laminating a dielectric film on the whole organic package substrate. 
Then, drilling (on the dielectric film) and Cu plating to fill the holes (vias) are done to make connections to the contact pads  
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Figure 8 - Simple process flow of the EMIB technology 

 
of the EMIB. Continue Cu plating to make lateral connections of the substrate as shown Figure 8(b). Then, it is followed by 
laminating another dielectric film on the whole substrate and drilling (on the film) and Cu plating to fill the holes and make 
contact pads, Figure 8(c). (Smaller pads on finer pitch are for microbumps while larger pads on gross pitch are for ordinary 
C4 bumps.) The organic package substrate with EMIB is ready for bonding of the chips as shown in Figure 8(d).  
 
On November 9, 2015, the industry’s first heterogeneous system-in-package (SiP) devices were announced [24] that integrate 
stacked HBM (high bandwidth memory) with high-performance  FPGAs and SoCs (system-on-chip) as shown in Figure 7. It 
can be seen that the lateral communications between the chips and the HBMs are taken care of by the EMIB and a TSV 
interposer is not needed.  
 
TSV-less Interposer: Organic Interposer. Figure 9 shows a 3D SiP with a large organic interposer (instead of a TSV 
interposer) [25]. The organic interposer has a size of 38mm x 30mm x 0.4mm. The linewidth, spacing, and thickness of the 
front-side and back-side of the organic interposer are the same and are, respectively, 6μm, 6μm, and 10μm. A high-
performance application-specific IC (ASIC) die measured at 19.1mm x 24mm x 0.75mm is attached on top of the organic 
interposer along with four HBM DRAM die stacks. The 3D HBM die stack with a size of 5.5mm x 7.7mm x 0.48mm 
includes one base buffer die and four DRAM core dice which are interconnected with TSVs and fine-pitch micro-pillars.  
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Figure 9 – SiP with organic interposer 
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Coreless Substrate. Coreless substrate was first proposed in 2006[26]. Figure 10 shows the comparison between the 
conventional organic package substrate with build-up layers and the organic coreless package substrate. It can be seen that 
the biggest difference is that there is not a core in the coreless package substrate and all the layers of the coreless package 
substrate are the build-up layers. The advantages of the coreless package substrate are: (a) because of eliminating the core, 
the cost of the coreless substrate is lower; (b) by eliminating the core, higher wiring ability can be achieved; (c) better 
electrical performance because of good high-speed transmission characteristic; and (d) definitely smaller form factor. On the 
other hand, the disadvantages are: (a) because of eliminating the core, the warpage of the coreless substrate is larger; (b) 
easier to have laminate chipping; (c) poor solder joint yield because of less substrate rigidity; and (d) new manufacturing 
infrastructure is necessary. In 2010, the first coreless package substrate was manufactured for the cell processor of a 
production game console device [27]. Even though coreless substrates have many advantages, they are not popular because of 
the warpage control issue. One of the key factors affecting the warpage is the coefficient of thermal expansion mismatch of 
substrate materials. Thus, a proper control of this factor will help reduce the warpage issue of coreless substrates. Another 
factor affecting the warpage is the package assembly. Thus, a proper package assembly warpage correction control (with 
vacuum and pressure) will help improve the warpage problem of coreless substrate. 
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BOL. BOL was patented in 2004 [28] and was used by other companies [29, 30]. A conventional bump-on-capture pad 
(BOC) or simply bump-on-pad (BOP) flip chip organic substrate layout is shown in Figure 11(a). It can be seen that the flip 
chip pads are on a 210µm area array pitch in an solder mask (SR) defined configuration with one signal escape between 
bump pads resulting in an effective escape pitch of 105µm. The BOL methodology is shown in Figure 11(b); here, the 
landing pad on the substrate is merely the trace (lead) itself, or a slightly widened version of the trace which results in freeing 
up of enough routing space to allow routing an additional trace between bumps thereby resulting in an effective escape pitch 
of 70µm without changing the design rules (trace width and space) of the substrate. The improved BOL structure is shown in 
Figure 11(c). It can be seen that the bump pads are without any solder resist confinement, i.e., open SR [29]. The test 
vehicles, Cu-column on BOL, used in Ref. [29] are shown in Figures 11(d) and 11(e). It can be seen that one trace between 
the 180µm bump pitch and up to two traces with the 200µm bump pitch can be comfortably routed. Typical cross sections of 
the perpendicular-to-BOL and longitudinal-to-BOL are shown in the upper portion of Figure 12. A 3D slide finite element 
model showing the BOL, BOC (or BOP), and solder joint is shown in the middle of Figure 12. The creep strain contours of 
the BOL solder joint are shown in the lower portion of Figure 12 [31] and are too small to create solder joint reliability 
problem under most conditions. 
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ETS. ETS is one of the coreless substrates with fine linewidth/spacing embedding the top metal trace pattern into prepreg 
layer [32, 33]. The process flow of ETS is shown in Figure 13(a). It starts from a carrier board with a removable Cu foil. It is 
followed by using a typical electrolytic copper plating method to form the first layer of copper pattern.  
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Figure 13 - (a) Process flow for fabricating the ETS and (b) flip chip with C2 bumps on ETS assembly 



Then, laminate a prepreg on the copper pattern. It is followed by laser via drilling, electroless copper coating, dry film 
laminating, exposing and developing, second layer copper pattern plating, stripping, and micro etching. Once all the copper 
pattern layers have been completed, the carrier board will be removed. Since the Cu foil is connected to the first copper 
pattern, micro etching is necessary before SR coating. After the SR opening process, it is completed by metal finishes 
treatment, e.g., organic solderability preservatives (OSPs). Figure 13(b) shows a cross section of a Cu-pillar flip chip on ETS 
assembly [33]. The linewidth/spacing of ETS in use today is 15µm/15µm. However, 13µm/13µm is in production [34].  
 
Flip Chip Assembly 
Basically, there are two groups of flip chip assemblies: one is with an intermediate layer between the bonding pads/traces, 
and the other is not, i.e., nothing! Flip-chip assembly with intermediate layers such as solder for mass reflow and Cu-pillar 
with solder cap by TCB are called indirect bonding, which is the focus of this paper. Cu-to-Cu diffusion bonding, which does 
not have anything between the bonding pads/traces on the chip/wafer, is therefore, called direct bonding, which is out of the 
scope of the present study.  
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C4 Solder Mass Reflow. Solder mass reflow has been used for flip-chip assembly for almost 50 years. Most of the solder C4 
bumps are mass reflowed on either silicon, ceramic, or organic substrates. The assembly process is very simple, Figure 14 
(a): (i) use a lookup and look-down camera to identify the location of the bumps on the chip and the pads on the substrate; (ii)  

 
Figure - 15 PoP in a production smartphone. In the bottom package, the C4 solder bumped (AP) flip chip is mass 

reflowed on a 2-2-2 package substrate with a underfill, and then BGA to the PCB 



apply flux on either the C4 bumps, or the substrate, or both; and (iii) pick and place the C4 bumped chips on the substrate, 
then mass reflow with temperature H. Because of the surface tension of the solder bumps during reflow, the process is very  
robust (self-alignment). Figure 15 shows the cross section of a production smartphone. It can be seen that the application 
processor (AP) is housed in a PoP format (bottom package) and the solder bumped flip chip is mass reflowed on a 2-2-2 
organic package substrate with underfill. In general, the spacing between the bumps on the solder mass reflow of C4 bumped 
chips can be as small as 50µm. 
 
C2 Solder Mass Reflow. In the past few years, solder mass reflow of C2 (Cu-pillar with solder cap) bumped chips on either 
silicon, ceramic, or organic package substrates has been tried for high pin-count and fine-pitch flip-chip assemblies. The 
assembly process, Figure 14(a), is exactly the same as that of the C4 bumps, but the self-alignment characteristic is nowhere 
near the same, and thus, it is seldom being used. In general, the spacing between the pillars on the solder mass reflow of C2 
bumped chips can be as small as 25µm. 
 
C2 TCB. In the past few years, TCB of chips with an intermediate layer such as C2 (Cu-pillar with solder cap) bumps on 
silicon, ceramic, or organic package substrates, has been attracting attention for high-density and ultrafine pitch flip chip 
assemblies. Basically, there are two methods, one is with low-bonding force and the other is with a high-bonding force.  
 
C2 TCB with Low-Bonding Force. For the one with low bonding force, the assembly process is simple, Figure 14(b): (i) 
first, use the look-up and look-down camera to locate the position of the C2 bumps on the chip and their corresponding pads 
on the substrate; (ii) apply flux on the solder cap or on the substrate or both; and (iii) pick-and-place the chip on the substrate 
and then apply temperature (H) to melt the solder and a low force (f) to hold the chip at a certain distance from the substrate. 
The above procedure is done one chip at a time and therefore, the throughput is low in comparison with the C2 solder mass 
reflow process. Figure 16 shows a typical cross section of a flip chip assembly with TCB with low force on C2 bumps [35]. 
In general, the spacing between the pillars on the C2 chip by TCB with a low-bonding force can be as small as 8µm.  
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Figure 16 - Cross section of a C2 flip chip assembled on an organic package substrate by a TCB with low-force (CUF) 
 
C2 TCB with High-Bonding Force. For TCB with a high-bonding force on the C2 chip, the assembly process must be 
combined with the NCP or NCF underfill, which will be discussed in the next section. 
 
Underfill/Reliability 
The reliability of flip chip solder joints is enhanced by the application of underfill [7], especially on organic substrate. Most 
underfills consist of low-expansion fillers such as fused silica (SiO2) and a liquid prepolymer such as thermosetting resin 
(adhesive) that can be cured to a solid composite. In 1987, it has been shown that with underfill, the thermal fatigue life of the 
flip chip solder joints on ceramic substrate increased [36]. In 1992, it was proposed to use low-cost organic substrate instead 
of high-cost ceramic substrate for flip chip assemblies [14, 15]. This showed that with underfill, the large thermal expansion 
mismatch between the silicon chip (2.5x10-6/oC) and the organic substrate (15-18x10-6/oC) is reduced substantially and the 
solder joints are reliable for most applications. This opened up the doors for today’s very popular solder bumped flip chip on 
low-cost organic substrate packages used, e.g., in the processors of personal computers, notebooks, smartphones, tablets, etc. 
Basically, there are two different procedures to apply the underfill, namely pre-assembly underfill and post-assembly 
underfill. 
 
Post-assembly Underfill. For post-assembly underfill, the application of underfill is after the flip chip assembly, i.e., the flip 
chip is already on the substrate and the solder joints are already mass reflowed (either with C2 or C4 bumps) or low-force 
TCB with C2 bumps. For post-assembly underfill, there are basically two methods, namely CUF [37] and MUF [38-42]. CUF 
is the first method that went into volume production. For CUF, the underfill is dispensed by a needle or jet w/o vacuum 



assisted on one (or two) sides of the flip chip on substrate assembly. Because of capillary action, this underfill completely 
fills the space between the chips, solder joints, and substrates. The chip and the substrate are then firmly bonded by curing the 
underfill. CUF is performed one chip assembly at a time, thus, throughput is an issue.  
 
Molded underfill was first proposed in 2000 [38] and later by others [39], [40], [41], [42], and [43]. For MUF, the modified 
epoxy mold compound (EMC) is transferred molding the chip and filling the gap between the chip, solder joints, and the 
substrate of the flip chip assembly. The encapsulant of the chip and the underfill are formed at the same time, which will 
increase the throughputs. However, the challenges of MUF are: (a) the flow of MUF between the chip and the substrate is 
usually assisted by vacuum, (b) the size of the silica filler of the EMC must be very small for flowability, (c) the cost of 
modified EMC for MUF is much higher than that for package molding, (d) package warpage is an issue due to the thermal 
expansion mismatch between the EMC, chip, and substrate, (e) the molding temperature is limited by the melting point of the 
solder joints, and (f) the standoff-height and pitch of the solder joints cannot be too small. In order to increase the throughput 
of CUF and avoid the drawbacks of MUF, a method of post-assembly underfill has been proposed in [44], where a stencil is 
designed for printing the underfill material for flip chips on organic-panel and Si-wafer assemblies. 

 
Figure 17 - PoP in a production smartphone. The C2 flip chip is TCB with high-force on a package substrate (TC-

NCP) 
Pre-Assembly Underfill. For pre-assembly underfill, the application of underfill is either on the substrate or wafer and is 
before the flip-chip assembly. Solder reflow of the C4 bumps with underfill on substrates is called NUF [45] . High-bonding 
force TCB of the C2 bumps with nonconductive paste (TC-NCP) underfill on the substrate,  
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Figure - 18 Lamination of NCF on a C2 bumped wafer, dicing, and TCB of NCF flip chips (one by one)  



Figure 14(c), was presented in 2009 [46] and has been used to assemble the application processor for a production 
smartphone as shown in Figure 17. The NUF and NCP underfills can be spun on, dispensed by a needle, or vacuum assisted.  
 
By learning from the chip-on-glass technology, high-bonding force TCB of C2 bumps with nonconductive film underfill on 
wafers have been studied, e.g., [47],  [48, 49],  [50, 51], [52], [53],  [54, 55], [56], and [57-59] for 3D IC integration. Figure 
18 shows the lamination of NCF on the Cu-pillar with a solder cap bumped wafer. High-bonding force TCB of the C2 chips 
with NCF (after singulation from the laminated wafer) has been in production for 3D IC integration on the TSV-based DDR4 
DRAM, Figure 18. This 3D memory cube is stacked one chip at a time and each chip takes ~ 10s for the underfill film to gel, 
the solder to melt and solidify. Throughput is a problem!  

 
Figure 19 - Collective TCB with high-force with NCF flip chips 

 
In order to resolve this problem, it was proposed [58, 59] to have a collective bonding method which is shown in Figure 19. It 
can be seen that the C2 chip with NCF is prebond (bond force = 30N, temperature = 150oC, and time <1s) on a stage with 
temperature = 80oC. For postbond (first step (3s): bond-force = 50N, temperature = 220–260oC, second step (7s): bond-force 
= 70N, temperature = 280oC) on a stage temperature = 80oC. Thus, instead of using 40s in stacking up four chips by the 
conventional method, it only takes less than 14s by the collective TCB method. Some images of the cross section of the 
proposed collective bonding method are shown in Figure 19. Reasonable good joints are achieved with optimized conditions. 
In general, the spacing between the pillars on the C2 chip with either NCP or NCF by TCB with high bonding force can be as 
small as 10µm. 
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Figure 20 - Trend in flip chip bump and pitch 

 



Summary and Recommendations 
Wafer bumping, package substrate, assembly, and underfill for flip-chip technology have been investigated in this study. 
Some important results and recommendations are as follows: 
 Flip chip technology has come a long way. From the three-bump flip chip to 10,000-bump flip chip, and could be 

50,000-bump flip chip by the year of 2020. Also, by that time, the flip-chip pitch could be as small as 30µm as shown in 
Figure 20. 

 C2 bumps have better thermal and electrical performance and can go down to finer pitch (smaller spacing between pads) 
than C4 bumps.  

 The self-alignment characteristic (one of the most unique features of flip chip technology) of the C2 bumps is nowhere 
near the C4 bumps. Thus, mass reflow is usually applied to C4 bumped chips.  

 C2 bumped chips are usually assembled by TCB with high-force, while low-force is sometime used. 
 The advantages of TCB are for higher pin-count, finer pitch, thinner chips, higher-density, and thinner package 

substrates, and controlling warpage and die tilt. One of the drawbacks of TCB is throughput (compared with mass 
reflow). 

 A package substrate with ten build-up layer (5-2-5) and 10µm linewidth and spacing is more than adequate to support 
most of the flip chips. In the past few years, because of the very high-density, high I/Os, and ultrafine pitch requirements 
such as the sliced FPGA, even a 12 build-up layer (6-2-6) package substrate is not enough to support the chips and a 
TSV interposer is needed. 

 As of today, TSV-interposer is very expensive. In order to lower the cost, enhance the electrical performance, and reduce 
the package profile, TSV-less interposers such as the SLIT, SLIM, NTI, EMIB, and organic interposer have been 
developed. This will be the trend in package substrate for high-density and performance flip chip applications. 

 More research and development works should be done on innovative and low-cost ETS and coreless substrates for 
portable, mobile, wearable, and IoTs applications.  More research and development works should be done to effectively 
use the BOL technique to increase routing density, and thus, lower the cost and reduce the size of organic package 
substrate. 

 For the post-assembly underfill approach, the CUF or MUF is usually applied to flip-chip assemblies with mass reflow 
and TCB with low-bonding force methods. 

 For the pre-assembly underfill approach, the NUF, NCP, or NCF is usually applied before flip-chip assemblies; NUF is 
with mass reflow and NCP or NCF is with high-force TCB. In general, the NUF and NCP are applied on the substrate 
and the NCF is laminated onto the C2 bumped wafer and then diced into individual chips. 

 The collective TCB with high-force method can be a potential high-throughput process for stacking C2 chips with 
laminated NCF.  

 Flip chip technology is facing stiff competition. Some of its market share will be taken away by the fan-out wafer/panel-
level packaging (FOW/PLP or simply FOWLP) technology [60, 61, 62]. Figure 21 shows the schematic and SEM 
(scanning electron microscope) images of the cross section of the PoP which houses the AP and mobile DRAMs of a 
production smartphone. This PoP is fabricated with the InFO (integrated fan-out) WLP technology [62]. It can be seen 
from the bottom package that the wafer bumping, fluxing, flip chip assembly, cleaning, underfill dispensing and curing, 
and build-up package substrate (of the AP shown in Figure 15) have been eliminated and are replaced by the EMC and 
RDLs (for the AP as shown in Figure 21). This results into a lower cost, higher performance, and lower profile package. 
This is very significant, since the smartphone company and the component company developing these packages are the 
“sheep leaders”. Once they use it, then many others will follow. Also, this means that FOWLP is not just only for 
packaging baseband, RF (radio frequency) switch/transceiver, PMIC (power management integrated circuit), audio 
codec, MCU (micro control unit), RF radar, connectivity ICs, etc., it can also be used for packaging high-performance 
and large (>120mm2) SoC such as APs. 

 With the popularity of SiP, fan-out (which can handle multiple dies) will be used more because the flip-chip WLCSP 
(wafer-level chip scale package) can only handle single die. 
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PURPOSES
To present the status of flip chip technology such as:

 Wafer bumping 
 Package substrates 
 Flip chip assembly 
 Underfill 

Their future trends will also be recommended. 

Finally, the competition on flip chip technology will be briefly mentioned.
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Package Substrate (TC-NCP)
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 Flip chip technology came from a long way. From the three-bump flip chip to 10,000-bump flip chip, and could be 50,000-bump flip chip by the year 
of 2020. Also, by that time, the flip-chip pitch could be as small as 30µm.

 C2 bumps have better thermal and electrical performance and can go down to finer pitch (smaller spacing between pads) than C4 bumps. 

 The self-alignment characteristic (one of the most unique features of flip chip technology) of the C2 bumps is nowhere near the C4 bumps. Thus, 
mass reflow is usually applied to C4 bumped chips. 

 C2 bumped chips are usually assembled by TCB with high-force, while low-force is sometime used.

 The advantages of TCB are for higher pin-count, finer pitch, thinner chips, higher-density, and thinner package substrates, and controlling warpage 
and die tilt. One of the drawbacks of TCB is throughput (compared with mass reflow).

 A package substrate with ten build-up layer (5-2-5) and 10µm linewidth and spacing is more than adequate to support most of the flip chips. In the 
past few years, because of the very high-density, high I/Os, and ultrafine pitch requirements.

 such as the sliced FPGA, even a 12 build-up layer (6-2-6) package substrate is not enough to support the chips and a TSV interposer is needed.

 As of today, TSV-interposer is very expensive. In order to lower the cost, enhance the electrical performance, and reduce the package profile, TSV-
less interposers such as the Xilinx/SPIL’s SLIT, Amkor’s SLIM, SPIL/Xilinx’s NTI, Intel’s EMIB, and Cisco/eSilicon’s organic interposer have been 
developed. This will be the trend in package substrate for high-density and performance flip chip applications.

 More research and development works should be done on innovative and low-cost ETS and coreless substrates for portable, mobile, wearable, and 
IoTs applications.  More research and development works should be done to effectively use the BOL technique to increase routing density, and thus, 
lower the cost and reduce the size of organic package substrate.

SUMMARY
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Thank you!

Questions?



Thank you very much for your 
attention!




	S13_03 - John Lau.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28




