### **IPC Midwest 2011**

### Testing the Long Term Reliability of an Environmentally Friendly PCB Final Finish

### **Dave Rund**

### **Christopher Associates**

### **Executive Summary:**

The new plasma polymer PCB final finish that eliminates harsh chemicals and waste streams also promises to eliminate creep corrosion, but will it stand the test of time? Before any new product or process can be implemented, it must be tested extensively to demonstrate its fitness for use. Performance from the beginning to end of the product life cycle must be measured or simulated. For the new PCB finish, the gamut of testing included characterizing the application process, storage robustness, corrosion resistance, solderability and joint reliability. Methods used to test the coating included FTIR, EDX, mixed flowing gas, steam aging, wetting balance, thermal aging, shear testing, and micro sectioning with both SEM and optical microscopy. Over a year's worth of testing performed by two independent US laboratories is presented in this paper. It details the purpose, method and results of each test and discusses the findings with respect to long-term performance.



## Testing the Long Term Reliability of an Environmentally Friendly PCB Final Finish

## LATEST DEVELOPMENTS IN PLASMA FINISHING OF PCB

David Rund Christopher Group Santa Ana, CA

H R I S T O P H E R



## Plasma Coating Performance Features

- New patented technology for surface finish
- Simple process
- Ultra thin coating (40nm)
- Strong, reliable solder joints (lead-free)
- Superior corrosion protection
  - Creep corrosion inhibitor
- Reduced process cost
  - Low energy consumption
  - Dry, room temperature process
  - Reduced consumables
  - No precious metals
- Multiple reflow
- Extended shelf life





## Environmentally Responsible

- Film deposited by plasma polymerization
- No hazardous waste
- No waste water
- No solvents
- No greenhouse gases
- Non-toxic exhaust can be vented directly to the atmosphere or run through a chemical scrubber
- High throughput system (~350,000 panel/year)





## **Plasma Polymerization**



Figure 2.1. Chemical structure and ESCA (Electron Spectroscopy for Chemical Analysis) C1s spectra for PTFE and a fluorocarbon coatings plasmadeposited in CW conditions.

www.IPCMidwestShow.org

Ref: Plasma Polymer Films, Imperial College Press



The plasma polymer is a unique class of material

- Conditions in the plasma chamber allow formation of structures that cannot be made using traditional polymerization reactions
- Plasma polymers tend to be highly cross-linked, randomly branched and contain unreacted functionality

The Plasma Finish is a hybrid PTFElike material

Plasma Finish retains desirable properties while allowing best quality solder joints

## **Plasma Coating Properties**











## **Plasma Coating - Assembly Process**

- Solder Mask printed on PCB
- Plasma Coating Deposition
   40nm film thickness
- Solder Print

Pick & Place

Solder Reflow

 Heat + Acidic Flux removes SPF







## Plasma Coating Removal by Flux + Heat

- Copper test coupons with Plasma Coating
- Liquid Flux + reflow
- Remove Flux and elemental analysis of surface



SEM

**BEI – Back-Scattered Electron Image** 



## **PLASMA COATING CLEANLINESS**

Ionic Cleanliness Surface Insulation Resistance Electrochemical Migration – bare PCB



## **Ionic Cleanliness / Surface Insulation Resistance**

Table 1 - Anionic Contaminants on Surface of Circuit Board

Results in  $\mu g/cm^2$ 

Ionic cleanliness as per IPC TM – 650 2.3.28 Limit = 10ug/cm2

| Sample ID | F      | CI.  | NO <sub>2</sub> | Br⁻  | NO <sub>3</sub> <sup>-</sup> | PO <sub>4</sub> -3 | SO4 <sup>-2</sup> |
|-----------|--------|------|-----------------|------|------------------------------|--------------------|-------------------|
| Control   | < 0.01 | 0.01 | < 0.01          | 0.02 | 0.02                         | < 0.01             | 0.02              |
| Sample 1  | 0.94   | 0.02 | < 0.01          | 0.20 | < 0.01                       | < 0.01             | 0.05              |
| Sample 2  | 0.27   | 0.04 | < 0.01          | 0.43 | < 0.01                       | < 0.01             | 0.02              |

Semblant Plasma Finish with soldermask



SIR: Temperaturehumidity-bias (THB) test 40C/93%RH at 12VDC for 168 hours



## **Electrochemical Migration Testing at bare PCB**

- ECM testing of SPF coating has been completed to confirm that SPF does not cause ECM
- No testing completed on PCB assemblies to determine if SPF prevents ECM

Test Parameter:

|                       | Siemens Board                                                   |  |  |
|-----------------------|-----------------------------------------------------------------|--|--|
| Pretreatment          | NA                                                              |  |  |
| Test Parameter        | 130°C/85%RH/3,5VDC/120hrs                                       |  |  |
| Pass/Fail<br>Criteria | insulation resistance<br>optical inspection                     |  |  |
| Tested Structures     | 4 line-2-line structures front<br>4 line-2-line structures back |  |  |



## **ECM Testing at bare PCB level**



Insulation



÷.

## SOLDERABILITY





BGA pictures courtesy of **Rockwellins** 



## **Flux Residue**



- Hydrophobic nature of the plasma coating prevents flux from spreading along surface
- Flux residue remains on surface of solder, possibly reducing requirement for cleaning



## Solderability - Via Fill Coating Thickness Through Via





## **Via Hole Deposition**

### Normalized EDX Spectra fluorine Peak Height





## **Solder Joint Strength - 5 Reflows**





# • Multiple reflows have no impact on shear strength

5<sup>th</sup> reflow



## **SOLDER JOINT RELIABILITY**





www.IPCMidwestShow.org

ONFERENCE & EXHIBITION

## Reliability Test: 1000 hrs at 150C





## Reliability Test: 1000 hrs at 150C





## Reliability Test: 1000 hrs at 150C

Cross Section OM 1000x of Solder Copper Interface (Quantum MicroMet)





## **Contact Resistance**

Testing & results courtesy of **Rockwell** 



## **Contact Resistance**

- A connector card was designed to mate to a Cinch Connector which is a 32 position edge card connector with gold contact fingers
- Sample setup
  - Control no SPF
  - 40 nm SPF
  - 80 nm SPF
  - 120 nm SPF
- Contact resistance was measured using a calibrated low resistance multimeter (Agilent 34401) which used a four-point measurement method to overcome the resistance inherent in the test leads
- 3 insertions for each sample were measured
- Control sample was remeasured after 3 insertions of each SPF sample to check for build up of SPF material on the contact fingers of the connector







Contact Resistance Setup

## **Contact Resistance**

- Each box plot represents 16 measurements
- 40nm SPF does not effect contact resistance





## **Contact Resistance - Control**

 There is no appreciable buildup of the SPF coating on the edge card contact fingers after multiple insertions of SPF coated cards





## **Contact Resistance Conclusions**

- 40 nm coating does not cause an increase in contact resistance
- 80 nm coating the spread of the data starts to increase to some extent. The overall contact resistance is still low, well within the normal variation of a connector contact resistance
- 120 nm coating the variability in the data grows, with several outliers present. The contact resistance was still less than 110 milliohms
- There is no appreciable buildup of the plasma coating on the edge card contact fingers after multiple insertions of plasma-coated cards



## **CORROSION RESISTANCE**

Fluoropolymers are among the most chemically inert of all polymers and remain stable in almost all chemical environments.

- Gas Phase SO2 Corrosion
- Mixed Flowing Gas
- Sulfur Clay



## **Corrosion Resistance – Gas Phase SO**<sub>2</sub>

Gas phase SO<sub>2</sub> Test – Buffered Na<sub>2</sub>SO<sub>3.</sub> for 24 hours, RH~80% at 41.5°C



**ENEPIG** board

ENIG board After 2 reflows





Plasma finished sample As coated

After 2 reflows





## Mixed Flowing Gas: University of Limerick Stokes Institute

| °C | % RH | Days | H <sub>2</sub> S | SO2        | NO2        | Cl2              |
|----|------|------|------------------|------------|------------|------------------|
| 30 | 70   | 20   | 100<br>ppb       | 200<br>ppb | 200<br>ppb | <b>20</b><br>ppb |



% Surface Corrosion

| Exposure Time (days) | ENIG | OSP | ImAg | Plasma |
|----------------------|------|-----|------|--------|
| 5                    | 4    | 9   | 90   | 0      |
| 10                   | 10   | 17  | 100  | 0      |
| 15                   | 25   | 33  | 100  | 1      |
| 20                   | 30   | 44  | 100  | 3      |

### Plasma Coating finish still acceptable at simulated 20 year life





## Sulfur Clay Testing – 7 Days



Cu + Plasma Coating

ImAg + Plasma Coating

Cu

ImAg



www.IPCMidwestShow.org

Testing completed by DfR Solutions

## Sulfur Clay Testing – 7 Days

Hi P ENIG





Testing completed by DfR Solutions

Hi P ENIG + Plasma Coating

ImSn + Plasma Coating



## **RF Signal Loss**

### Plasma Coating caused no impact on signal loss for high RF up to 10 GHz (test limit)







## Summary

- New patented technology for surface finish
- Environmentally friendly
  - No hazardous gases
  - No hazardous waste
- Simple, controllable, reworkable process
- Excellent solderability
  - Multiple reflow
  - Good reliability and shear strength
- SPF coating does not affect contact resistance

Semblant<sup>®</sup>

- Superior corrosion resistance
  - SO2 gas phase corrosion
  - Mixed flowing gas
  - Creep Corrosion
- No impact on high RF signal loss

