IPC Midwest 2011

Low Silver Solder Alloys with Good Drop Shock and Thermal Cycle Reliability

Ronald Lasky, Ph.D., P.E.

Indium Corporation

Executive Summary

SAC105 was shown to have better drop shock reliability than SAC305; however SAC105 thermal cycle performance was not necessarily as good at SAC305. Small quantities (0.1% or so) of some elements appear to improve both drop shock and thermal cycle reliability of SAC105. This paper will be an overview of work performed to demonstrate this phenomenon.

Low Silver Alloys: A Review of TC and DS Reliability

Ronald C. Lasky, PhD, PE

Indium Corporation rlasky@indium.com

Ronald C. Lasky, PhD, PE

RoHS: True of False

1. You are safer because of RoHS

False

• But they are!

IPC

CONFERENCE

TOXIC MELT In a poor suburb of New Delhi, India, where informal e-waste processing is a common household business, a man pours molten lead smelted from circuit boards. His family uses the same pots for cooking-a potentially deadly practice.

76 NATIONAL GEOGRAPHIC · JANUARY 2008

Burning Insulation From Wires

www.IPCMidwestShow.org

68 NATIONAL GEOGRAPHIC · JANUARY 2008

RoHS was established to ...

 The purpose of this Directive is to approximate the laws of the Member States on the restrictions of the use of hazardous substances in electrical and electronic equipment and to contribute to the protection of human health and the environmentally sound recovery and disposal of waste electrical and electronic equipment

Hopefully done like this!

www.IPCMidwestSho

REUSE Workers strip picture tubes from thousands of used computer monitors piled at Monitex, a Grand Prairie, Texas, recycler. Tubes that work will be exported to a factory in Thailand, where they'll be used in low-cost TVs. Broken ones are recycled domestically.

True or False #2

• Lead-Free has no process or performance benefits.

False: LF: The Good News: Coalescent Performance Comparison

Lead-Free Reliability Thought

- "Everyone knows there is no data on LF reliability right?"
- Wrong
 - ->\$3,000 B of products made, some since 2001
 - No major reliability issues
 - ->\$100M of R&D
- Long term (>5 years) data still sketchy

Acknowledgments

- This overview relies on the work of:
 - Greg Henshall, etal
 - Low Silver BGA Sphere Metallurgy Project, SMTAI 2010, Orlando, FL
 - Richard Coyle, etal
 - The Effect of Silver Content on the Solder Joint Reliability of a Pb-free PBGA Package, SMTAI 2010, Orlando, FL
 - Ning-Cheng Lee, etal
 - ACHIEVING HIGH RELIABILITY LOW COST LEAD-FREE SAC SOLDERJOINTS VIA MN OR CE DOPING, ECTC 2009
 - And Older Work

A Brief History of SAC Alloys

- Circa 1999: Near Eutectic SAC387 is initial LF Alloy of Choice
 - Eutectic is alloy of choice as it is replacing eutectic SnPb
 - 100s millions of mobile phones assembled with this alloy to date
- SAC305 becomes IPC's SVPC Alloy of Choice Circa 2006
 - Exhibits less tombstoning than SAC387
 - Uses less silver
- SAC105 has wide acceptance in 2007-2008 to now
 - Less silver
 - Performs better in drop shock than SAC305, but worse in Thermal Cycle (TC)
 - Disadvantage: Tm is 225C vs. SAC305 217C
- Is there an alloy that is better in both drop shock and TC?

Older Work: NEMI Test Plan

Component	Source	Description	Reliability Testing	
			-40 to 125°C	0 to 100°C
Type 1 TSOP	AMD	48 Pin TSOP with leads on short sides, SnPb and NiPd finishes	Solectron	
2512 Resistor	Koaspeer	zero ohm chip resistor, SnPb and pure Sn finishes	Sanmina-SCI	
169 CSP	Lucent	0.8mm pitch, 11x11mm, 7.7 x 7.7 mm die, SnAgCu and SnPb balls	Kodak	Lucent
208 CSP (HDPUG)	ChipPac	0.8mm pitch, 15x15mm, 8.1 x 8.1 mm die, SnAgCu and SnPb balls	Kodak (both SnAgCu alloys)	Sanmina-SCI
256 BGA (NCMS)	Amkor	1.27mm pitch, 27x27 mm, 10.0 x 10.0 mm die, SnAgCu and SnPb balls	Celestica	Sanmina-SCI
256 CBGA	Vendor part; IBM ball attach	1.27mm pitch, no die, SnAgCu and SnPb balls		Motorola

SnAgCu balls: Sn4.0Ag0.5Cu - provided by Heraeus

Ref: Bradley; *Summary of Pb-Free Solder Reliability;* Motorola Quick Start Seminar-; Ft. Lauderdale, FL; February 2005

Summary of NEMI Results

Component	Temp	Lead-free	Mixed vs.
	Cycle, °C	vs. Sn-Pb	Sn-Pb
48 TSOP	-40 to 125	0	-
2512 resistor	-40 to 125	0	0
256 CBGA	0 to 100	+	-
256 PBGA	-40 to 125	0	0
256 PBGA	0 to 100	0	0
169 CSP	-40 to 125	+	+
169 CSP	0 to 100	+	0
208 CSP	-40 to 125	+	0
208 CSP	0 to 100	+	+

- + statistically better than Sn-Pb to 95% confidence
- statistically worse than Sn-Pb to 95% confidence
- 0 statistical differences less than 95% confidence

Ref: Bradley; *Summary of Pb-Free Solder Reliability;* Motorola Quick Start Seminar-; Ft. Lauderdale, FL; February 2005

169 CSP Results

Ref: Bradley; *Summary of Pb-Free Solder Reliability;* Motorola Quick Start Seminar-; Ft. Lauderdale, FL; February 2005

High Stress vs. Low Stress Reliability

Ref: Clech, JP; Lead-Free and Mixed Assembly Solder Joint Reliability Trends; APEX, S28-; Anaheim, CA; Feb. 2004

CONFERENCE & EXHIBITION

SAC Tombstoning

Henshall: Low Silver Investigation

- OSP, NSMD pads
- Tg=170° C PWB
- 1.27 to 0.5 mm pitch
- 0.32-0.62 mm ball dia
- Pack Size: 8-45 mm
- 0-100 and -40-125 CTC

Low Silver BGA Sphere Metallurgy Project

Phase II – Reliability Assessment Sixth Report: Thermal Cycling Results for Unmixed Joints

> Greg Henshall and Michael Fehrenbach, Hewlett-Packard Chrys Shea, Shea Engineering Services Quyen Chu and Girish Wable, Jabil Ranjit Pandher, Cookson Electronics Ken Hubbard and Gnyaneshwar Ramakrishna, Cisco Systems Ahmer Syed, Amkor

Henshall's Weibull Plot

- Most data sets "clean"
- Common anomaly was "late" failures
- Investigating cause

-40-125C results were mixed!

Dopants they studied do not affect TC

Henshall' s Effect of Silver Plot

Effect of Silver Concentration on N63: -40/+125C (Truncated)

SMTAI 2010

- Behavior more complex than for 0/100 conditions
- Sn-Pb joints less reliable than Pb-free joints for:
 - Small pkgs All Pb-free alloys
 - Large pkgs All Pb-free alloys except SACX0307
- "Plateaus" in N63 with [Ag]; location depends on pkg.
- SAC305 has highest reliability for 0.8 & 1.0 mm pkgs; reliability similar to SAC205 for 0.5 & 1.27 mm pkgs.
- Results continue to be examined; validation needed

www.IPCMidwestShow.org

18

Coyle Etal

The Effect of Silver Content on the Solder Joint Reliability of a Pb-free PBGA Package

Richard Coyle¹, Heather McCormick², John Osenbach³ Peter Read¹, Richard Popowich¹, Debra Fleming¹ and John Manock⁴

¹Alcatel-Lucent, ²Celestica Inc., ³LSI Corp, ⁴formerly Alcatel-Lucent

richard.coyle@alcatel-lucent.com hmccormi@celestica.com

SMTAI 2010 October 26, 2010

Experimental - Test Package

	Package Parameter	Value	
	Package Type	PBGA	
	I/O	680	
	Body Size	35 x 35 mm	
	Die Size	13 x 13 mm	
	Die Thickness	13 mils	
	Ball Pitch	1.0 mm	
	Ball Diameter	0.63 mm	
	Solder Ball Alloy	SnPb, SAC305, SAC105	
	Substrate Pad Design	Circular SMD	
	Substrate Pad Solder Mask Opening Diameter	0.45 mm	
	Substrate Pad Surface Finish	Electrolytic Ni/Au	
	Substrate Type	BT, 4 metal layer	
	Substrate Thickness	0.61 mm	
	Package Thickness	1.78 mm	
4			

Die Edge	

- 0-100C
- Dwell from 10, 30, 60 min

Coyle's ATC Weibull Plot for 10 Minute Dwell Time

680 I/O PBGA Thermal Fatigue Reliability SAC305, SAC105, and 63Sn37Pb

0/+100 °C temperature cycling, 10 Minute Dwell Times

Work Performed by Lee etal on SACM and SACC

- SACM
 - 98.5Sn1Ag0.5Cu0.05Mn
- SACC
 - 98.5Sn1Ag0.5Cu0.02Ce
- Two Tests:
 - JEDEC Drop Test (JDT)
 - 0-250 hours for aging at 150C or 250 TCT
 - Thermal Cycle (-40 to 125C)
 - 0-250 hours aging at 150C

The Effect of Dopants: Ni

A Nickel Addition was found to be most effective

Ge

The Ge acts as an antioxidant and surface active agent

15 minute Ramp to 340°C 30 minute cool

Sn-0.7Cu-0.05Ni+Ge

Sn-0.7Cu-0.05Ni

Older Work: Doped SAC105 Alloys

Drop Test Performance (Mean value) 40 No. of Drops to Failure □As-reflowed 30 After aging 20 10 0 SAC305 SAC105 Sn1.05Ag0.64Cu0.2Mn0.02Ce Sn1.1Ag0.45Cu0.1Ge Sn1.1Ag0.47Cu0.06Ni Sh1.07Ag0.47Cu0.085Mn Sn1.1Ag0.64Cu0.13Mn Sn1.13Ag0.6Cu0.16Mn Sn1.1Ag0.45Cu0.25Mn Sh1.07Ag0.58Cu0.037Ce Sn1.09Ag0.47Cu0.12Ce Sn1.16Ag0.5Cu0.08Y Sn1.05Ag0.73Cu0.067Ti Sn1.0Ag0.46Cu0.3Bi0.1Mn Sh1.05Ag0.46Cu0.6Bi0.067Mn Sh Sn1.05Ag0.56Cu0.3Bi Sn1.0Ag0.49Cu0.17Y Sn1.19Ag0.49Cu0.4Bi0.06Y Sn1.15Ag0.46Cu0.8Bi0.08Y SAc387

Drop Test

JEDEC Drop Test (JDT)

- SACC>SACM>SnPb>SAC105>SAC305
 - TFBGA (NiAu leads) on OSP PWB pads
 - Aging: TCT 250 cycles

Thermal Cycle Test

Characteristic Life TCT

- SACC>SACM>SAC305>SAC105>SnPb
 - TFBGA (NiAu leads) on OSP PWB pads aged 250 hrs 150C
 - Unaged samples SnPb is best in TC first fail

$SACC > SACM \ge SAC305 > SAC105 > SnPb$

RelaSoft's Webul++ 6.0 - www.Webui.com

Fig. 12 Weibull plot for TCT performance for TFBGA (NiAu) with various sphere alloys assembled on PCB (OSP). Prior to TCT, the device was aged at 150C for 250 hrs.

www.IPCMidwestShow.org

IPC

CONFERENCE & EXHIBITION

The Effect of Aging

Aging and IMC Thickness

Fig. 28 IMC thickness of TFBGA joints at packaging side mounted on PCB (OSP).

Other Observations

 Many claim harsh environment studies show lead-free not as robust as SnPb

Conclusions

- For 0-100C type TC SAC305>SAC105>SnPb
- DS: SAC105 \approx SnPb > SAC305
- For -40-125C TC the results are mixed
 - LF reliability for this condition is still "unproven"
- Adding dopants can improve results in DS and TC
 - Both SACM and SACC have better drop shock performance than SAC105 and much better drop shock performance than SAC305
 - Both SACM and SACC match SAC305 in thermal cycle performance (-40-125C) and are better than SnPb Re characteristic life
 - Unaged SnPb is better than all SACs Re first failure
 - Hence, SACM and SACC are a better choice than SAC105 or SAC305
 - The mechanism for the improved performance is attributed to a stabilized microstructure with a uniform distribution of IMC particles

Conclusions Con't

- Aging has a dramatic effect on both drop shock and thermal cycle life
- Low Silver SAC has $T_m > 217^\circ C$
 - More Stress on PWB
- SAC has other process challenges: Graping, HIP:
 - Modern solder pastes can minimize these defects

www.IPCMidwestShow.org

Ronald C. Lasky, PhD, PE