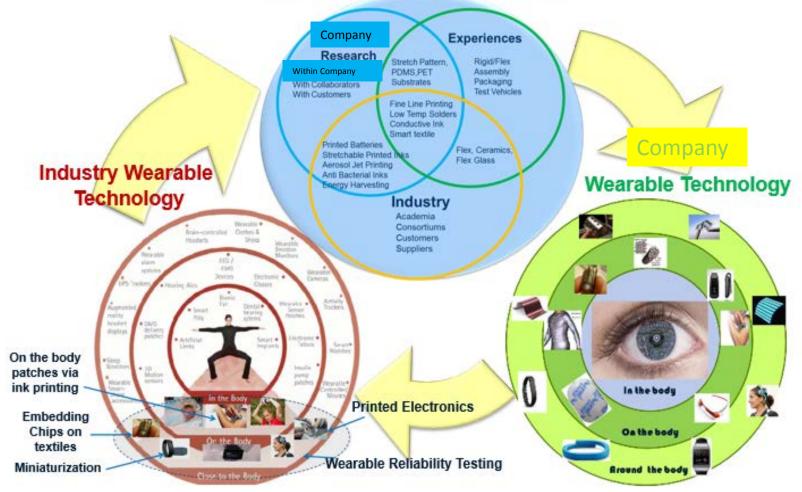


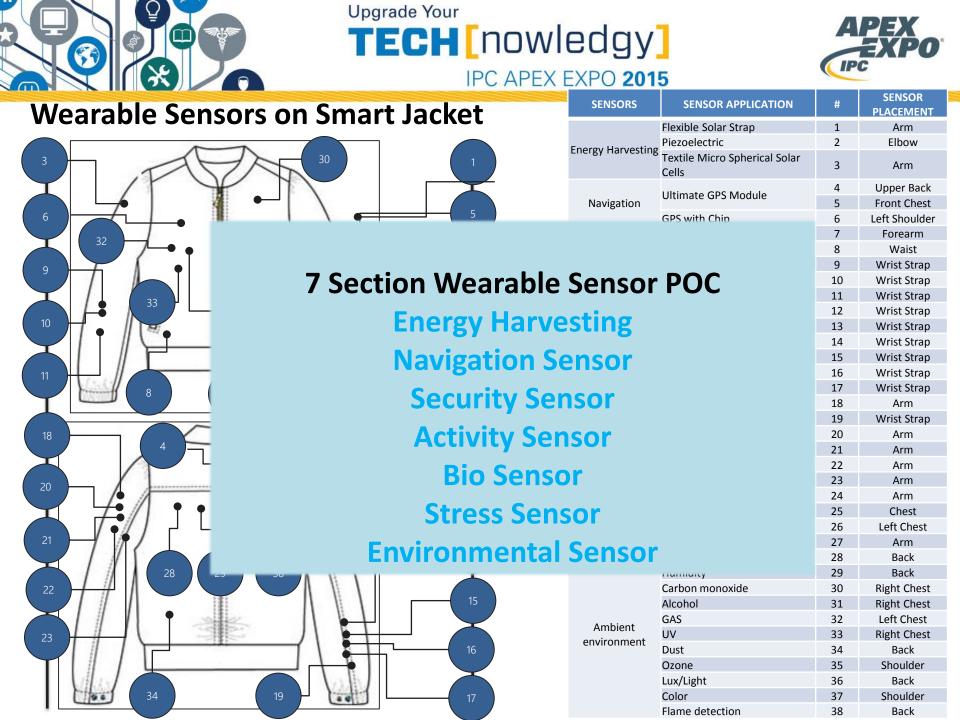
Innovative Ideas for Manufacturing Smart Apparels

William Uy, Weifeng Liu Ph.D., Jie Lian Ph.D., Zhen (Jane) Feng Ph.D., Anand Mohan, Susan Abraham Ph.D., Anwar Mohammed, Hector Marin, Murad Kurwa

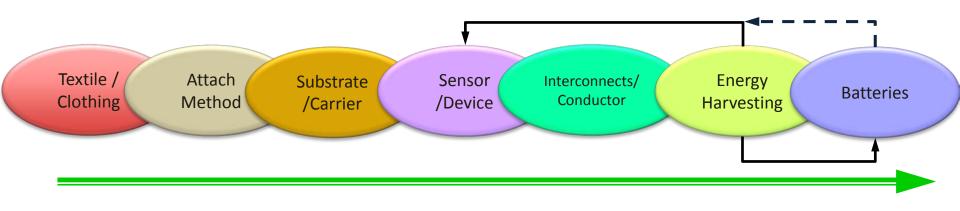
Advanced Engineering Group, FLEXTRONICS International Inc. 847 Gibraltar Drive, Milpitas, CA, USA 95035

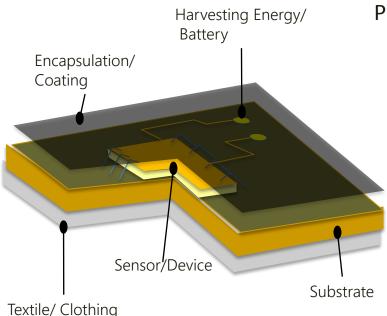
- ⊕ Introduction
- Wearable Sensors on Smart Jacket Overview
- Conceptual Framework POC
- Wearable Sensor Proof of Concept Overview
- Energy Harvesting POC Mechanism
- Interconnect/ Conductors
- Substrates / Carrier
- Coating/Encapsulation
- Power Source
- Attach Process
- Reliability Testing
- Finite Element Analysis
- Future Works
- Summary





Wearable Technology Introduction





Upgrade Your **TECH [NOWIEDGY]** IPC APEX EXPO 2015

Conceptual Framework POC

Proof of Concept (POC) Results Examples:

- TPU substrate with printed conductive silver with a maximum stretch of 20% and washable.
- Lamination of TPU to clothing with conductive traces
- Silver coated nylon thread used for interconnects
- Energy harvesting to power up WT sensors/ charge batteries
- Laser cut conductive clothing for interconnects/ conductors
- Coating / encapsulation to protect modules (spray, conformal, glob top and lamination).

Wearable Sensor Proof of Concept Overview

Energy Harvesting

Sensor/Devices

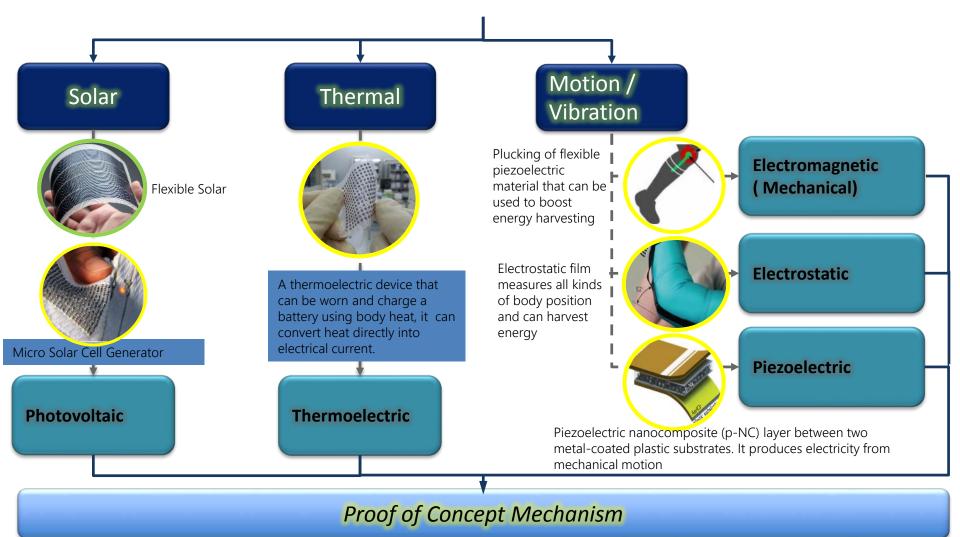
Substrates/ Carriers

Attach Process

Electrical Interconnect / Conductors

> Encapsulation / Coating

> > **Batteries**

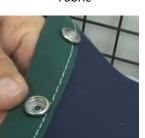


Upgrade Your **TECH [NOWIEDGY]** IPC APEX EXPO 2015

Energy Harvesting POC Mechanism

Interconnect/ Conductors	Method	Equipment/Tools	Challenges
Silver/carbon conductive ink Stretchable conductive cloth Non-stretchable conductive cloth Silver coated nylon thread Stainless steel thread Copper solderable strand Emerald copper wire Tinned copper plait (copper plait) Zipper interconnect	Printed on TPU Substrate Different type of Stitching Lamination / steam press Snap Glue Dispensing / Bonding Soldering Crimping Curing Velcro / adhesion Coatings	Screen Printing Lamination / Steam Press Electric Sewing / Stitching Laser cut Electronics Cricut Snap/Hammer Driven tool Oven / UV Curing Laser Soldering / Iron	Washability Flexibility Stretchability High Temperature Tarnish of silver
Nickel and copper plated ripstop fabrics Polyester and Inox steel fiber Conductive ribbon Copper tape Z-axis conductive tape (ACF) Snap button Snap fastener	Conductive Velcro	Conductive Cloth Stretchable	
Flexible conductive glue Conductive glue Velcro (conductive / Non- Conductive) Magnetic Switch	i i i i i i i i i i i i i i i i i i i		

Metal Crimping


Miniaturize Connector

Conductive Wires/ thread

Isolated wiring

Fastener / Snap button

Conductive Copper Cloth

	Method	Method Equipment/Tools	
Substrates / Carrier	Conductive ink printed on TPU	Lamination / Steam Press Electric Sewing / Stitching	Challenges Washability Flexibility
TPU Film	Different type of Stitching	Laser cut	Stretchability
PTFE Membrane	Lamination	Electronics Cricut	High Temperature
Polyurethane membrane	Steam press	Snap/Hammer Driven tool	Material compatibility
Polycarbonate Plastic	Glue Dispensing / Bonding	Soldering Iron	
Polypropylene membrane	Hot air	Punching cutter	
Polyimide Film	Crimping	UV curing	
Viscose Ravon			

Nylon

Stretchable Belt/ Strap

Silk

Polyester

Flax (Linen)

Heat Shrinkable Tubing

PET

Acrylic

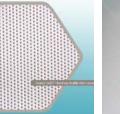
Modacrylic

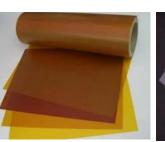
Leather

Cotton

Flax (Linen)

Polyethylene Foam


Fabric Tape


Polyurethane Foam

Thermoplastic polyurethane PTFE Breathable Membrane

Polyimide Film

Polycarbonate substrate

Heat Shrinkable Tube

Stretchable Nylon Strap

Polyethylene foam

PET Substrate

	Method	Equipment/ Tools	Challenges
Coating/Encapsulation Dam and Fill Conformal coating TPU Lamination Spray coating Screen Printing	Spray Atomizing Dam and Fill Edge Bonding Glop Top Oven /UV Curing Low pressure moulding	Underfill Oven/UV curing Micromelt Potting Parylene Lamination	Flexibility Bendable Foldable Material compatibility

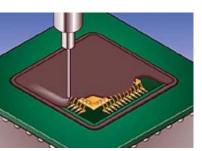
Potting

Hotmelt Coating on Fabric

Underfill/NCP

Potting

Farbic waterproofing spray


Parylene Coating

Micromelt moulding

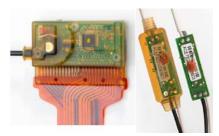
Sogru Elastomer

Shrinkable Rubber

Elastomer patch

Dam and Fill

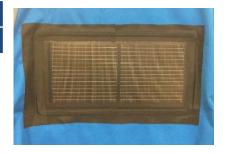
Conformal Coating


Potting

Hotmelt on Fabric

Edge Bonding

Macromelt LPM



	Method	Equipment/ Tools	Challenges
		Lesen Caldering (Juer	
Power Source	Lamination Soldering Snap/ Fasteners	Laser Soldering/ Iron Laser cut Lamination	Washability Flexibility Stretchability
Flexible Solar			
Chain Battery			
Stretchable Battery			
Piezoelectric			
Thermoelectric			

Printed Batteries

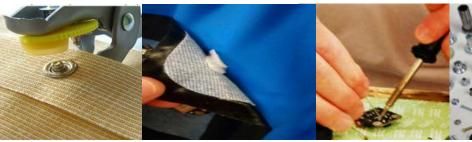
Thin Batteries

Flexible Solar

Piezoelectric

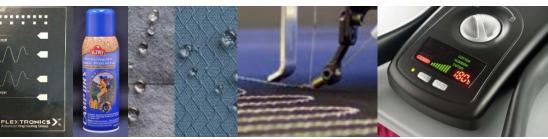
Stretchable Battery

Thin Battery



Chain Battery

Attach Process	Equipment/ Tools	Challenges
	Lamination / Steam Press	
Lamination	Electric Sewing / Stitching	
Braid Stitch	Laser cut	Washability
Waiving Stitch	Electronics Cricut	Flexibility
Warp-Knitting Stitch	Snap/Popper equipment	Stretchability
Relief Embroidery	Soldering Iron	, High Temperature
Dispense Glue/Bonding	Punching cutter	Material compatibility
Fabric Protector	UV curing	Waterial compationity
Curing adhesive	0	
Zigzag placement	Low pressure moulding	
Ink screen printing		
Snapping		



Popper Tools

Velcro

Fasteners

Conductive Ink Printing

Fabric Protective Spray

Stitching

Steam Press

Zipper interconnect Clip/ Staple

Fastening Velcro

Laser cutting Magnet attach

Spray adhesive

Pressure Sensitive Tape (PSA)

Iron Soldering conductive thread

Steam Press

Cricut Electronic pattern

Hotmelt

ACF /Hotbar

Laser soldering

Etching on conductive fabric

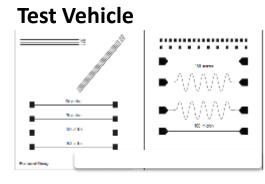
Upgrade Your **TECH [NOWIEDGY]** IPC APEX EXPO 2015

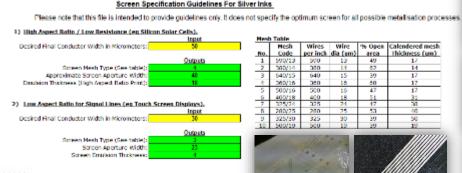
Sensor Integration	Application	Process Method	Future Works
GPS, LUX ,LED	Navigation & light Sensor	Substrate Denim Fabric	Reliability Testing Stretchable
LED Flora Control		Interconnects Silver conductive thread	Foldable Bending Washability
Module GPS Lux	 Components: Flora control module, GPS module, Lux sensor, three LEDs 	Attach Process Stitch with conductive thread & pressure sensitive fabric	Equipment / Tools Fabric Laser Cut Stitch Machine Screen Printing for
	 GPS module: at preset destination, LEDs will blink ,Lux sensor: at low lumens, the LED 	Coating/ Encapsulation Protective Fabric Spray / Conformal Coating	conductive ink Design Consideration Design Guidelines
	will light up	Energy Source Battery for indoor Flexible Solar - outdoor	Test Method Module Miniaturization and use conductive silver ink for the traces

Sensor Integration	Application	Process Method	Future Works	
Skin Perspiration & Temperature	Biosensor Fitness and Healthcare Monitoring	Substrate Breathable Lining Fabric Breathable Membrane Fabric Breathable outerwear	Reliability Testing Stretchable Foldable	
Outer wind In/Out Einstion		Interconnects Conductive Printed Ink	Bending Washability	
Wearable Smart Baset Clothing Perspiration vapour 2 chamber packet Skin Sweat vapour 2 hg Berspiration and skin benger abure sensor	Measure skin perspiration, temperature and sensor size 2X2mm x0.8mm with low power consumption and operating voltage of 1.8V. Equip with apps and Bluetooth for data	Interest Clefing Attract Integration Measure skin Perspiration and skin perspiration, temperature and sensor measure size 2X2mm x0.8mm //attract	Attach Process Sensor was place in between lining and breathable membrane fabric then stitch /laminate the membrane	Equipment / Tools Fabric Laser Cut Stitch Machine Lamination Screen Printing for conductive ink
		Coating/ Encapsulation Protective Fabric Spray / Conformal Coating on module	Design Consideration Design Guidelines Test Method	
	collection	Energy Source <i>Coin battery</i>	Module Miniaturization and use silver ink for traces Energy harvesting	

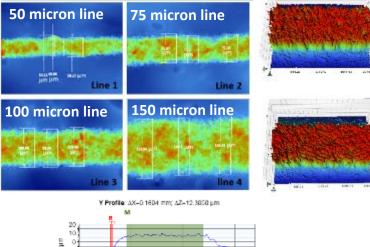
Sensor Integration	Application	Process Method	Future Works
Portable Flexible Solar	Energy Source	Substrate PET and pressure sensitive fabric	Reliability Testing Stretchable Foldable
s b c c c c c c c c c c c c c c c c c c	Solar panel to power up sensor and charge batteries and it includes: USB adapter, USB charger, DC adapter and multiple adapters for charging phones and rechargeable lithium battery via solar	Interconnects Stranded wire and connector	Bending Washability
		Attach Process Use a patch and laminate the solar to fabric	Equipment / Tools Stitch Machine Lamination
		Coating/ Encapsulation Protective Fabric Spray / Conformal Coating	Design Consideration Design Guidelines Test Method
	panel	Energy Source Outdoor application	Control Module Miniaturization Use conductive ink for the traces

Sensor Integration	Application	Process Method	Future Works
Zipper Switch	Conductive Switch	Substrate Denim Fabric	Reliability Testing Stretchable Foldable
		Interconnects Conductive cloth	Bending Washability
	Zipper is connected with conductive wire and can be use to power on/off	Attach Process Use a fastener to attach the conductive cloth to denim then use a strand wire for interconnects	Equipment / Tools Lay stitch Machine
	the sensor/LED.	Coating/ Encapsulation Conformal Coating	Design Consideration
		Energy Source <i>Outdoor application</i>	Design Guidelines Test Method




Sensor Integration	Application	Process Method	Future Works
Fine line Printing	Conductive Traces	Substrate Stretchable TPU	Reliability Testing Stretchable Foldable
1*1*2*1*1*****************************		Interconnects Conductive Ink	Bending Washability
	Fine line conductive ink printing with 50um, 100um, 150um printed	Attach Process Laminated the stretchable TPU to fabric	Equipment / Tools Lamination Screen Printing for conductive ink
	to stretchable TPU substrate	Coating/ Encapsulation	Design Consideration
		Energy Source Solar / battery	Design Guidelines Test Method

Fine Line Printing for Conductive Trace / Interconnects



Measurement of Silver Ink Line Width

20

10

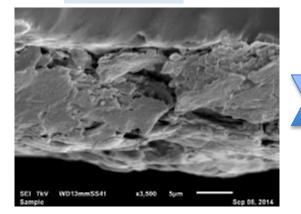
1.5

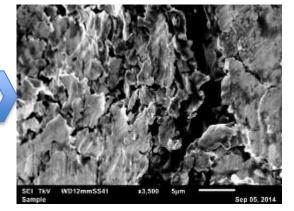
0.5

Screen can be designed based on fine line printing requirements (line width). There are several factors to consider for the screen design:

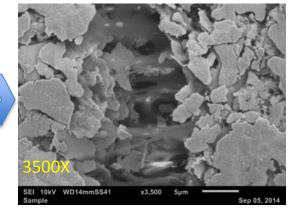
- Screen material type: stainless steel or polyester.
- Screen thread diameter and mesh count
- **Emulsion thickness**
- Mesh angle

Demonstrated printability of 50, 75, 100 and 150 micron wide lines using screen printed stretchable silver conductive ink





Time Zero to 100% Strain - SEM Images


Time Zero

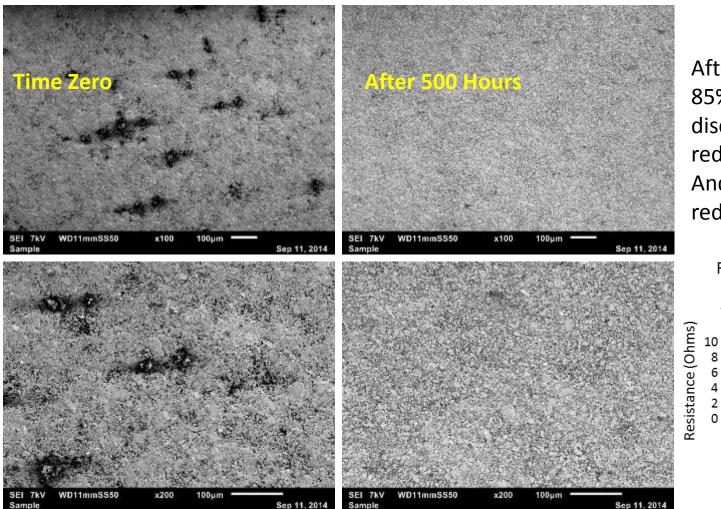
50% Strain

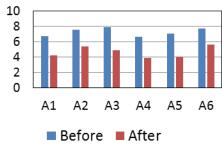
100% Strain

- From cross sectional view, the particle size ranges from 0.5 -15 um
- As strain increases the cracks in the printed ink becomes wider, although at 100% strain in 1000X magnification it shows there is still connectivity between silver flakes

Remarks :

- Conductive silver ink was printed to TPU substrate with a 4 Mils thickness
- Oven Curing Parameter Setting : 10minutes @ 120 °C in accordance with conductive ink typical curing specification.
- Strain was performed in a customized stretchability test equipment development by our team.

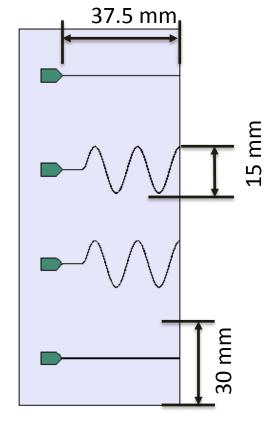

Customized Stretchability Testing



Time Zero and After 85%RH Humidity and 85C Temperature, 500 hours

After 500 hours of 85%RH/ 85C, the discontinuity region reduces significantly, And the resistance reduces

> Resistance Before and After Humidity and Temperature Change


Finite Element Analysis Modeling

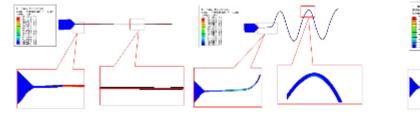
- Half model deployed due to symmetry
- Critical dimension as shown

Thickness:

- 1) Ink:0.005mm
- 2) Substrate: 0.1mm

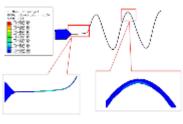
Material Name/Type	Substrate	Ink
Flexural Modulus (MPa)	5.6	11400
Poisson's Ratio	0.45	0.25
Density (ton/mm ³)	1.2e-09	2.2e-09
CTE, ppm/C	200	40
Elongation at break	550%	96%

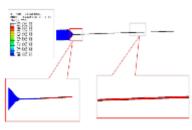
TECH [nowledgy]



Finite Element Analysis for Conductive Ink on TPU Substrate

Upgrade Your


Component	Elongation	Pattern	Max. Principal Strain	Stra	TPU + Subs alght-150um
Ink		Straight line	0.11		e wave-150um
(150um)	10%	Sine wave	0.0239	100 C	e wave-100um aight-100um
Ink		Straight line	0.109	9 0	
(100um)		Sine wave	0.0318	15 15	_
Ink		Straight line	2.76	d xew	
(150um)	250%	Sine wave	0.598	0.5	
Ink	250%	Straight line	2.71	0	
(100um)		Sine wave	0.795	0 10% 50	0% 75% 100% 12 Stretchi


Principle strain at about 96% stretching

Sine Wave: 150um

Sine Wave: 100um

Straight Line : 100um

- The max principle strain of straight pattern is almost the same as stretching rate. It will crack as the stretching rate is about 96%.
- The sine wave pattern is safe even under 250% stretching.

Challenges

- Miniaturization of integrated sensors
- Display module to smart textiles
- Energy Harvesting
- Design evolution for flexibility, stretchable and foldable
- Water resistant and washability
- Equipment for integration to textile
- Fashionable Design

Future Work

- Create a stack up layer modeling simulation for the sensor integrated to clothing.
- Continue other integrated sensor for reliability testing, physical, environmental and washability test requirements.
- Process characterization and ranking summary for the attach and interconnects methods.
- Collaboration with equipment and material supplier to manufacture proof of concept study on wearable applications.
- Continue to work on energy harvesting, applicable to smart clothing.

Thank You