

Upgrade Your **TECH** [NOW|edgy] IPC APEX EXPO 2015

Flexibility Testing of Printed and Wearable Electronics

Weifeng Liu, Ph.D., William Uy, Jie Lian, Ph.D., Zhen Feng, Ph.D., Anwar Mohammed, Murad Kurwa, Dennis Willie, Victor Najar, Hector Marin

> Advanced Engineering Group, FLEXTRONICS Intl. 847 Gibraltar Drive, Milpitas, CA 95035

Outline

- Introduction to printed and wearable electronics
- Flexibility testing challenges
- Proposals for flexibility testing
- Validation case studies
- Future work

Printed Electronics

Typical PE products

Typical printing processes

Screen printing

Aerosol jetting

Gravure printing

Flexography printing

E-paper

Battery

Temp. sensor

Solar

Upgrade Your **TECH** [NOWIEdgy] IPC APEX EXPO 2015

Wearable Electronics

SOURCE: BEECHAM 2013 REPORT

SOURCE: T. Morrison et al., University of Washington

Printed and Wearable Electronics

Flexible & Printed Applications Market for the Different Functions (in US\$M) Smart Fabrics/Textile Market Revenue Forecast from 2012 to 2018 (in US\$B)

Source: Semicon West 2013

http://www.semiconwest.org/sites/semiconwest.org/files/docs/ SW2013_Christophe%20Fitamant_Yole%20Developpement.pdf

Source: Markets and Markets http://www.marketsandmarkets.com/

Upgrade Your **TECH [nowledgy]** IPC APEX EXPO **2015**

Printed and Wearable Electronics Application Conditions

Flexibility Challenges for Wearable Applications

- Wearable electronics will experience different types of flexibility stresses:
 - Stretching
 - Bending
 - Torsion
 - Twisting
 - Crumpling
 - Others
- It is challenging to generalize a set of fixed flexibility tests to simulate or duplicate all the actual use conditions
- No flexibility testing standards available, solely developed for wearable and printed electronics
- No universal equipment currently available to accommodate all the tests

Upgrade Your TECH [nowledgy] IPC APEX EXPO 2015

Strain

Our Approach

Flexibility Testing

- Stretchability test
- Bending test
 - Variable angle bending
 - Folding test
 - Free Arc bending
 - Variable radius bending
 - Spherical bending
- Torsion test
 - Torsion
 - Twisting
- Rolling test
 - Parallel sliding plate
 - Rolling flex test
- Crumple compression test
- Combined or time dependent stresses
 - Stretchability + twisting
 - Rolling + torsion
 - Constant stretching
 - Constant bending

- Programmable parameters:
 - Force

٠

•

- Displacement
- Speed
- Angle
- Holding time
- Repeating cycle
- Monitoring attributes:
 - Resistance
 - Functionality
 - In situ or periodically
 - Fixture design
 - Mandrel diameter
 - Sharp edge/chamfer
 - Mandrel material (rubber vs steel)
 - Sample preparation (with/without carrier)

Universal Flexibility Tester

Stretchability test

Variable Radius Test Sliding Plate Test

Compression Test

Multi-mode Bend Test

Multi Modal Torsion Test

Variable Angle Bend Test

Variable Diameter Rolling Test

Free Arc Bend Test

Stretchability Testing

Test Purposes

- To determine the stretching limit of circuit by uniaxial tensile force
- To determine the stretching fatigue of circuit at repeated tensile load
- To determine recoverability under prolonged stretching conditions

Test Samples

- Samples may be prepared in straight edge strips or in "dogbone" strip as described in ASTM E-345.
- Custom product samples

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Simulated Use Conditions

- Stretchable ECG skin patch
- Biometric clothing (compression shirt, underwear, sock)

Test Setup

Standard References

- ASTM E-345 Standard Test Methods of Tension Testing of Metallic Foil
- IPC-TM-650, 2.4.18 Tensile Strength and Elongation, Copper Foil
- IPC-TM-650, 2.4.18.1 Tensile Strength and Elongation, In House Plating
- ASTM E606-12 Standard Test Method for Strain-Controlled Fatigue Testing.
- ASTM E466-07 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
- ASTM D882-12 Standard Test Method for Tensile Properties of Thin Plastic Sheeting

Upgrade Your **TECH** [NOW|edgy] IPC APEX EXPO 2015

Torsion / Twisting Test

Test Purposes

- To determine the torsion or twisting limit of flexible circuit
- To verify if the flexible circuit remains functional throughout repeated torsion/twisting operations (without or with tension)

Test Samples

- Samples may be prepared in straight edge strips or in "dogbone" strip as described in ASTM E-345.
- Samples may be mounted on a carrier
- Custom product samples

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Simulated Use Conditions

- Biometric compression shirt
- Wristband (e.g., X Torsion SmartPhone)

Test Setup

Standard References

• ASTM A938 - 07(2013) Standard Test Method for Torsion Testing of Wire

Rolling Flex Test

Test Purposes

• To evaluate the functionality of flexible circuit devices under repeated bending and rolling conditions.

Test Samples

- Samples may be prepared in straight edge strips
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

 Roll-to-roll manufacturing process (epaper, flexible display, etc)

Test Setup

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

- IPC-TM-650 2.4.2.1 Flexural Fatigue and Ductility, Foil.
- IPC-TM-650 2.4.3E Flexural Fatigue, Flexible Printed Wiring Materials.

Upgrade Your **TECH** [NOW|edgy] IPC APEX EXPO 2015

Variable Angle Bending Test

Test Purposes

- To determine the bending limit of flexible circuit
- To evaluate the functionality of flexible circuit devices under repeated bending conditions

Test Samples

- Samples may be prepared in straight edge strips
- Samples may be mounted on a carrier
- Custom product samples

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Simulated Use Conditions

- Elbow flex sensor
- Posture sensor

Test Setup

Standard References

- IPC-6013C Qualification and Performance Specification for Flexible Printed Boards
- IPC-2223C Sectional Design Standard for Flexible Printed Boards

Upgrade Your **TECH** [NOW|edgy] IPC APEX EXPO 2015

Sliding Plate Test

Test Purposes

 To evaluate the functionality of flexible circuit devices under repeated sweeping motion and constant bending conditions

Test Samples

- Samples may be prepared in straight edge strips
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

- Re-position of smart watch/wristband
- Wear on/off of Biomedical compression shirt

Test Setup

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

None

TECH [NOWIEDDATE IPC APEX EXPO 2015

Variable Radius Bending Test

Test Purposes

• To evaluate the functionality of flexible circuit devices under repeated bending conditions with variable bending radius.

Test Samples

- Samples may be prepared in straight edge strips
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

- Smart watch/wristband wear on/off
- Headband wear on/off

Test Setup

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

None

Free Arc Bending Test

Test Purposes

 To verify that flexible circuit devices under test remain functional throughout repeated bending operations.

Test Samples

- Samples may be prepared in straight edge strips
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

- Smart watch/wristband wear on/off
- Headband wear on/off

Test Setup

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

• None

TECH [nowledgy]

Folding Test

Test Purposes

• To evaluate the functionality of flexible circuit devices under repeated folding conditions.

Test Samples

- Samples may be prepared in straight edge strips or other shapes
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

- Folding of smart shirt/jacket
- Folding of e-paper/flexible display

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

 IPC-TM-650 2.4.5 Folding Endurance, Flexible Printed Wiring Materials

Crumple Compression Test

Test Purposes

 To verify that flexible circuit devices under test remain functional throughout repeated crumpling operations.

Test Samples

- Samples may be prepared in straight edge strips or other shapes
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

- Smart textile wrinkles
- Wearable under compression

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

• None

Upgrade Your **TECH** [NOWIEDGY] IPC APEX EXPO 2015

Spherical Bending Test

Test Purposes

 To verify that flexible circuit devices under test remain functional due to repeated flexural loading operations.

Test Samples

- Samples may be prepared in straight edge strips or squares to be mounted on a loop
- Samples may be mounted on a carrier
- Custom product samples

Simulated Use Conditions

- Flexible touch screen display
- Wearable key board/guita

Test Setup

Attributes Monitoring

- In situ resistance monitoring
- Functional check up every XXX cycles
- Physical check up

Standard References

- IPC 9707: Spherical Bend Test Method for Characterization of Board Level Interconnects
- IPC 9702: Monotonic Bend Characterization of Board-Level Interconnects

Developed

CASE STUDY: Stretchability Testing

Samples: Silver ink on TPU

Single Cycle Stretchability Relative Resistance vs. Strain 100 90 80 70 60 • G1_B R/Ro 50 • G2_A 40 • G2_B 30 Continuous Film 20

10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Strain

Printed Pattern Comparison

Repeated Stretchability

Ink Crack during Stretching

Summary

• Ink microstructure and design pattern have a great impact on conductivity during stretchability testing

Upgrade Your **TECH** [NOWIEDGY] IPC APEX EXPO 2015

CASE STUDY: Variable Angle Bending Test

Thin Battery

Battery Mounted on Al Foil Strip

Battery under Test (+/-15° bending angle)

Summary

- Battery shows gradual drop in voltage during the process
- No delamination between battery and Al foil (double tape strong enough)

CASE STUDY: Crumple Compression Test

Printed Ink

Ink material: Silver Substrate: Vinyl

Crumpling Test

ALLANSES PARE

After 1000 cycles

Summary

- Resistance of the ink traces increased from 6 ohms to 12 ohms after 1000 cycle crumpling test
- Some damages on the ink traces (separation from substrate, wrinkle, crack)

CASE STUDY: Free Arc Bending

Free Arc Bending Test

Summary

- Free arc bending test on a wristband to simulate wear on/off
- The wristband is functioning after 2000 cycles repeated bendings

Future Work

- Continue working on test method development and validation
 - Correlation with actual use conditions
 - Test method standardization

Committee Home Page

Contribute to the IPC Standards Your Company, Competitors, Customers and Suppliers Depend On

Committee D-65 Printed Electronics Test Method Development and Validation

Co-Chair Weifeng Liu, Flextronics International; Co-Chair Neil Bolding, MacDermid Autotype Inc

Staff Liaison Chris Jorgensen

Committee Charter D-65 is formed as a non-publishing subcommittee/work group specifically to identify, modify as needed, create as needed, and validate (by round-robin tests and other methods as appropriate) test and measurement methods specific to printed electronics, as a shared resource for other subcommittees operating under the D-60 committee. Once validated, test methods will be proposed and submitted for inclusion through the established process for TM-650.

Upgrade Your **TECH**[NOW|edgy] IPC APEX EXPO 2015

Acknowledgements

The authors would like to appreciate Dr. Joan Vrtis, Glen Moffatt, Lenny Richiuso, Severino Legaspi, Carlos Aceves, Jose Becerra and Raul Juarez of Flextronics and Neil Bolding of MacDermid for helpful discussions

Thank you for attending!

This is an invited presentation

A paper from this speaker will not be provided for the Apex Expo[™] 2015 Technical Conference