
IPC Fall Meeting

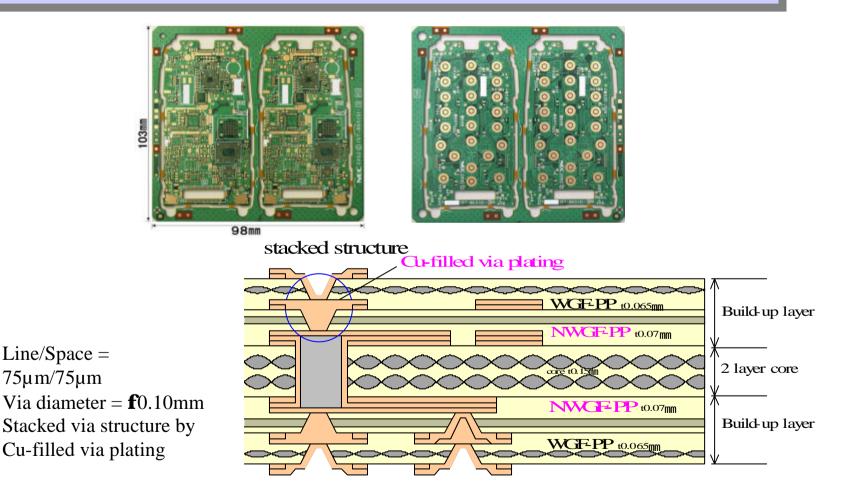
Sept 30, 2003

A Novel Build-up PWB for Latest Mobile Phone

<Speaker> Kotaro Takahashi AIREX Inc Development Department Assistant Manager

Current status of mobile phone in Japan (example)

The size is only 95 mm × 48 mm × 19.8 mm The weight is 105 g Internet connection so-called "I-mode" service Mega-pixel digital camera.



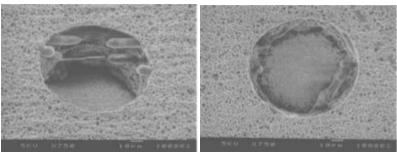
Requirements to build-up PWB for mobile phone

Requirements	Methodology	Solution
Portability	Lighter and Thinner PWB Higher density circuit	NWGF-PP & stacked via by Cu-filled via
Durability	Improvement of build-up layer strength	Combination of NWGF- PP & WGF-PP
Low cost	Process step reduction	Cu-filled via plaiting & NWGF-PP

* NWGF-PP: Non-woven glass fabric prepreg WGF-PP :Woven glass fabric prepreg

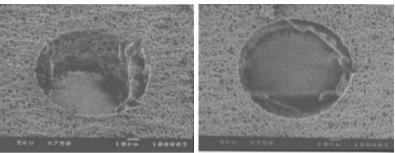
Developed build-up PWB for latest mobile phone

Gross-section diagram of 2+2+2 structure build-up PWB

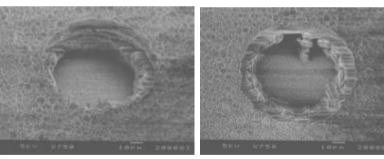

Non-Woven Glass Fabric –Prepreg (NWGF-PP)

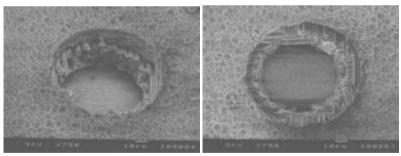
Comparison of mechanical properties (Build-up Structure)

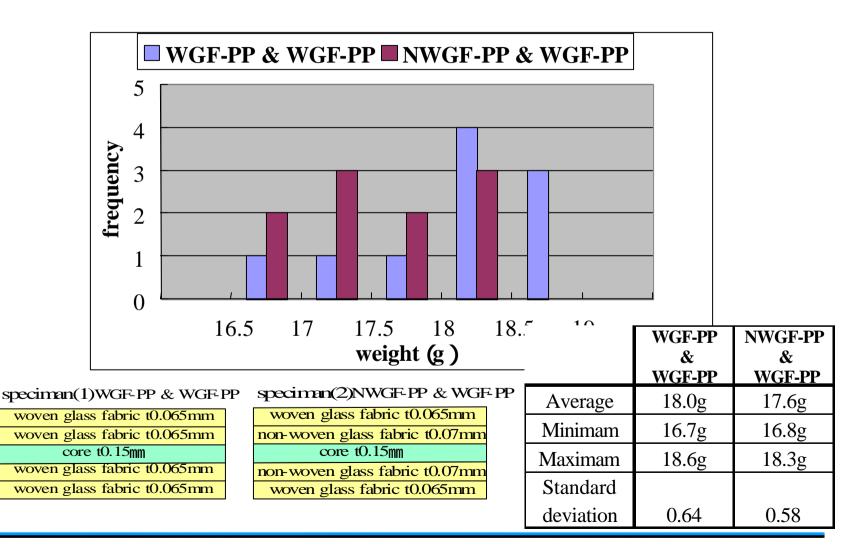
Item		Unit	AS-5000GP NWGF-PP	GEA-BE-67G WGF-PP		MCF-4000G RCC	
Impact Strength	32g	cm	>150	>150		85	
	50g		65		145	30	
Flexual Modulus	25deg. c	Gpa	1402	2213		1031	
Flexual Strength	25deg. c	Mpa	24.2	48.8		18.6	
SpecificesFavityby Hitachi Chemica		l Co., LTI	Good	No Biold-up		t t	
			(1.6-1.7)	(1.9	t0.06 GEA 67BE P/P (5) t0.1 MCL-BE-67G Core		
					t0.06 GEA 6	57BE P/P	

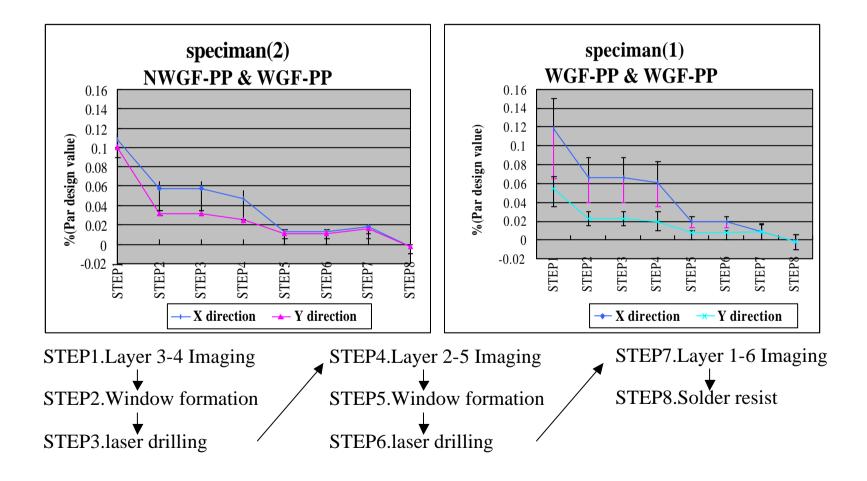

Laser drilling of build-up layer(**f**100µm)

NWGF-PP : 2Shots




WGF-PP: 3Shots


WGF-PP: 4Shots



Laser Conditions Machine : Hitachi Via Mechanics LCO-1C21 Frequency : 2000Hz(Cycle Method) Pulse Width : 14 micro sec

Comparison of build-up PWB weight

Comparison of base material for build-up layers

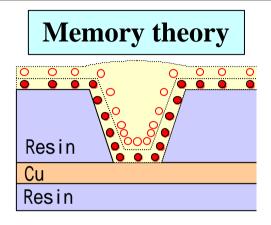
Comparison of three major base materials for build-up printed boards

Items	NWGF-PP	WGF-PP	RCC
Handling	Excellent	Excellent	No good
Laminating performance	Excellent	Excellent	Good
Thickness tolerance	Good	Excellent	Fair
Laser drilling performance	Fair	No good	Excellent
Mechanical Strength	Good	Excellent	No good

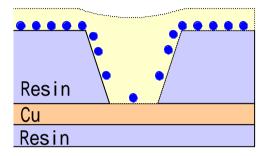
Some data are provided by Hitachi Chemical Co., LTD.

Summary of base materials

•The combination use of non-woven glass fabric material and woven glass fabric materials makes build-up PWB of high strength with the increase of minimum weight

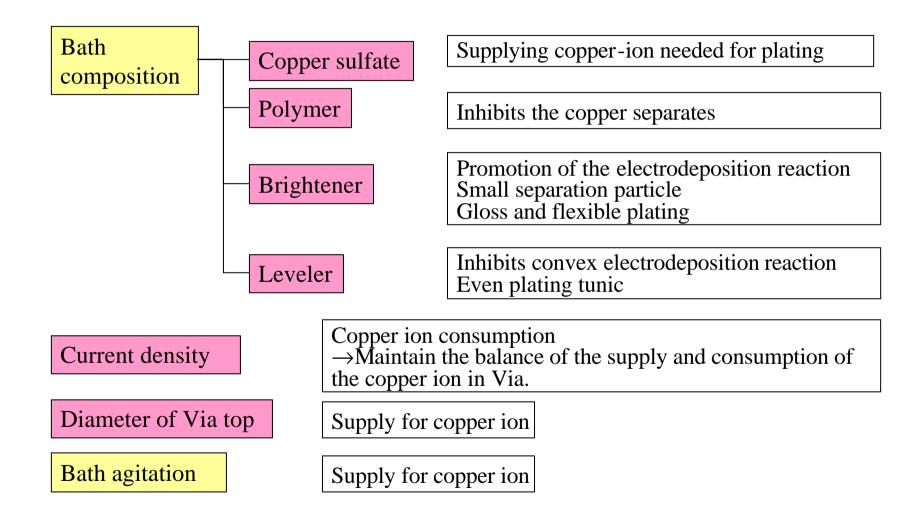

 \cdot Non-woven Glass Fabric has better processing nature in Laser processing than Woven Glass Fabric, Therefore the processing of the 100 μ m via needed for Cu-filled plating and the reduction of the processing cost were materialized

Cu-filled via plating

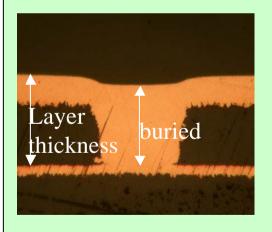

Why Cu-filled via plating?

Plating process	Plugging process		
Process step	Process step		
1.Laser processing2.Electroless copper deposition3.Copper electroplating	1.Laser processing2.Electroless copper deposition3.Copper electroplating4.Plugging		
To Imaging step	5.Electroless copper deposition 6.Copper electroplating To Imaging step		
Cost(index) 100	Cost(index) 316		

Principle of Cu-filled via plating

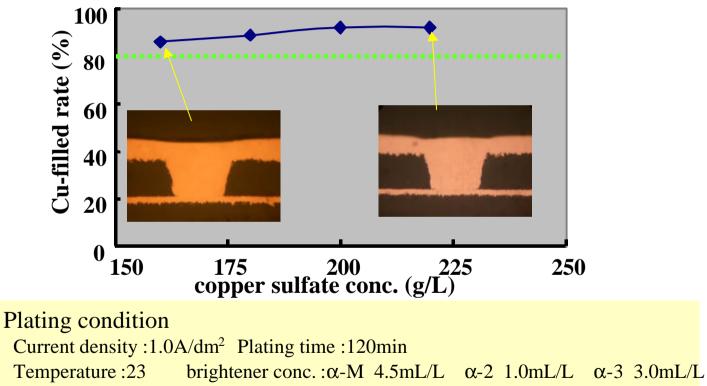

Dispersion theory

Promotion medicine (DCA) as Inhibitor (PCA) as inhibitor adsorbs rich accelerator absorbs evenly at the initial on flat part having thin diffusion layer, stage of plating. However, according to and less in concave part having thick growth of plating, adsorption amount diffusion layer. becomes thick as surface area of concave PCA:Polarizing Control Agent part becomes smaller. DCA:Depolarizing Control Agent Deposition to flat area is suppressed and plating will deposit in concave part Deposition at concave part is accelerated. preferentially.


By OKUNO CHEMICAL INDUSTRY CO.,LTD.

Plating bath control

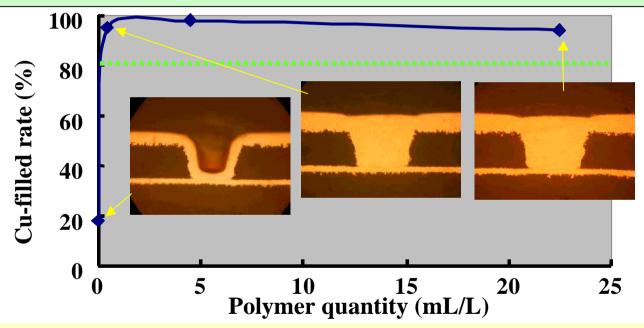
Cu-filled rate


Cu-Filled Plating is to full up (bury) inside of Via by copper plating. The evaluation index can be express as Cu-filled rate as following the formula. The value would indicate how much the via is filled up by copper.

Cu-filled rate = $\frac{\text{buried}}{\text{Layer thickness}} \times 100(\%)$ *) Layer thickness =Insulation layer+Upper copper thickness

Copper sulfate conc. vs. Cu-filled rate

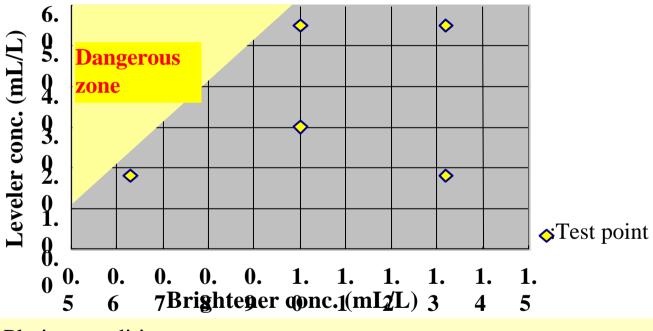
When sulfuric acid copper density is high even the Cu-filled rate high



Sulfuric acid conc. :50g/L Chlorine conc. :50mg/L

Plating thickness:20µm Under copper thickness:12µm Layer thickness:80µm

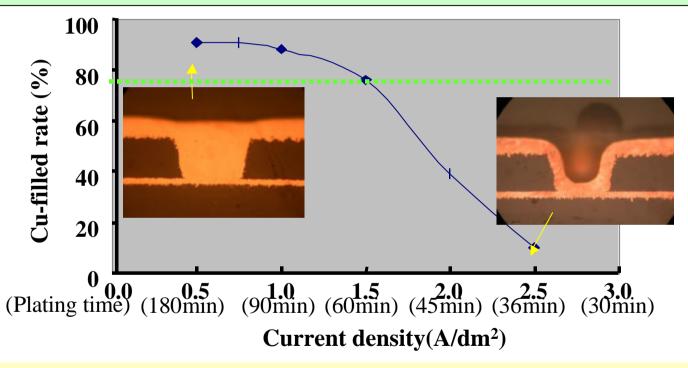
Polymer quantity vs. Cu-filled rate


The influence of the polymer quantity to the Cu-filled rate is small in the range of 4.5mL/L and 22.5mL/L of polymer quantity.

Plating conditionCurrent density :1.0A/dm²Plating time :120minTemperature :23brightener conc. :α-21.0mL/Lα-33.0mL/LPlating thickness:30µmUnder copper thickness:12µmLayer thickness:80µm

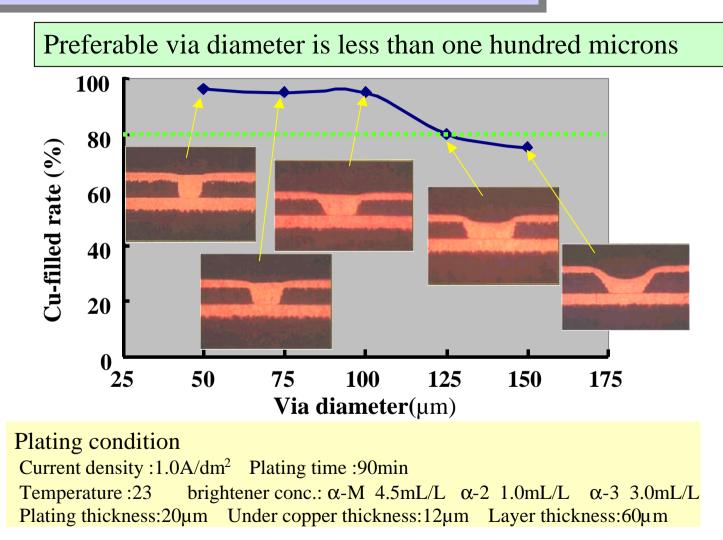
Brightener/Leveler vs. Cu-filled rate

Balance of brightener and leveling agent is critical.

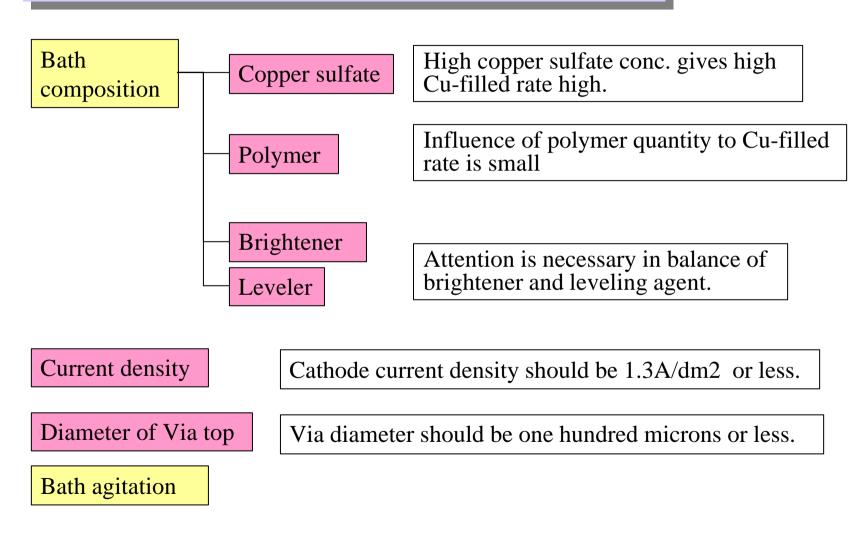

Plating condition

Current density :1.5A/dm² Plating time :82min Temperature :23 brightener conc.: α-M 4.5mL/L

Plating thickness:30µm Under copper thickness:12µm Layer thickness:80µm


Current density vs. Cu-filled rate

Cu-filled rate falls off when current density becomes high. Cathode current density needs to make below 1.3A/dm^2.



Via diameter vs. Cu-filled rate

Control point of Cu-filled plating

Summary of Cu-filled via plating

•Cu-filled via plating has come to be able to stabilize by optimizing of plating bath condition, plating work and via diameter.

•Cu-filled via plating technology has enable stacked structure with low cost.

Reliability evaluation result of the stacked structure

Reliability evaluation of the Stacked structure

Via shape

		Diameter of via top	Diameter of via bottom	Thickness of insulating layer	
Upper build- up layers	Average	133.8µm	117.6µт	51.5µm	
	Standard deviation	4.6	8.0	3.4	
Lower build- up layers	Average	99.9µm	78.0µm	63.2µm	
	Standard	2.5	6.2	1.9	
deviati Via top Upper build-up layers build-up layers					

Test result

Items	Condition	Standard (Resistance change rate)	Result	Judge
Temperature cycle Test(in liquid)	125 to -60 Immersion time : each 30 min 100cycle	Within 10%	1.9%	Passed
Hot Oil Test	1.260 and 5sec2.cooling 15sec3. 20 and 20sec100cycle	Within 10%	0.6%	Passed
Reflow Test	Peak temperature :260 Three times processing	Within 10%	1.1%	Passed
Composite Test	Reflow Test and Temperature cycle Test	Within 10%	0.4%	Passed

(1).By the combination use to woven and non-woven Glass Fabric PP for each build-up layer mass production of build-up PWB has been stabilized and enabled to achieve higher performance such as thinner, stiffer dielectric layers with lower cost.

(2).Since build-up PWB with stack structure has enabled to produce by Filled Via Plating processes, higher density circuit design has become simpler and shorter lead-time.

(3).Novel build-up PWBs using afore mentioned technology have been manufactured largely for the latest model mobile phone.