## **How to Design With Flex in Mind**

### Quick and Easy Design Improvements



# Why Flex?

- Space Savings
- Eliminate wiring errors
- > Electrical Performance
- Circuit Density

**Termination Variety** 



# **Space Savings**

- Flex circuits can fold and bend to fit into the available space
- Custom shape ensures a perfect fit on every assembly
- Flex circuits take up a fraction of the space of discrete wires
- Bulky board-to-board connectors can be eliminated
  - Bulky wire harnesses can be eliminated



























- Create paper dolls and modify to achieve best fit.
- Create "paper" doll with .010" Mylar to better represent circuit flexibility.
- If bend ratios are a concern, contact a flex circuit manufacturer to have a mechanical sample built.
  - Rout conductors using IPC-2223 guidelines.



















# **Termination Design**

- > Terminations
  - Robust During Installation and Use
  - No Strain on Termination Areas
  - Matched to Circuit for Signal Integrity and Current Load
  - Should be Addressed at Beginning of Design Cycle



### **Terminations**





### **Terminations**





# **Design for Etching**

#### 5:1 Conductor width to foil thickness ratio

#### > Optimize Artwork

- Center auto-routed patterns between pads
- Enhance pads, conductor widths and spacing where room permits
- Verify sufficient border to edge
- Avoid conductor width reductions at bend points and access openings- Stress Risers
  - Provide relief areas for pads located on large conductor areas





### **Conductor Pattern Considerations**

Is the Construction Balanced?

Stagger Conductors to Eliminate "I Beam" Effect





## **Design for Flexibility**

- Bending (static or dynamic?)
  - Refer to IPC-2223 for acceptable bend ratios
  - Strive for >10:1
  - No cracking or wrinkling of conductors
  - No tearing or delamination of insulation material
  - Remove Cover Material on Outer Layers Where There is no Circuitry
    - Consider Adding "Pads Only" Layers to Top And Bottom Of Circuit
      - > Elimination Of Plated Copper on Outer Layers



### **Bend Related Defects**



#### Cover Wrinkles from Compression



### **Bend Related Defects**



 Torn Cover material or Cracked Conductors



## **Bend Related Defects**





# **Design for Lamination**

#### Adhesive Thickness

- Allow for 1 mil per 1 ounce foil thickness
- Allow for 3-5 mils of flow per mil thickness
- Thicker Polyimide film may require extra adhesive

#### Stiffeners

- FR-4 material routed
  - 0.010" to 0.062" thick (thicknesses over 0.031" can be more expensive)
  - Dimensionally small stiffeners are more difficult to work with

#### Kapton – punched

- > 0.001", 0.002", 0.003", and 0.005" thick
- > Less expensive than FR-4, cleaner, and better registration



## **Access Considerations**

- Standard Coverlay
  - Square pad with round access hole
  - Square pads with slotted access hole
- PIC Coverlay
  Allows any geometry







# **Design for Dimensioning**

- Follow Recommended Tolerances
  - Use Multiple Datums
    - Looser Tolerances between datums
    - Tighter Tolerances within a datum
  - Use Profile Tolerances
    - Easier to Inspect
  - Remember it is Flexible
    - Measure in constrained condition





### Drill hole in base material and plate





Align negative, print, and etch





### **Align cover and laminate**





# **Tooling Options**

#### Volume and Tolerances define Tooling

- > Laser
  - b tight tolerances; complex cutouts
  - small quantities
- Steel rule die
  - intermediate tolerances
  - intermediate quantities
- Punch & die
  - > tight tolerances; complex circuits
  - > high quantities







# **Tooling Costs**

#### Laser

- Low Cost Set-up
- Higher cost per part
- Easily modified
- Steel rule die
  - Low to moderate cost
  - Short lead time
- Punch & die
  - > Highest cost
  - Lowest per part cost







# **Design With Flex in Mind**

- > Utilize Mock-ups for Best Fit
- Select Termination Style Early
- > Optimize Artwork
- Consider Flexibility Needs
- Lamination- Don't Forget Adhesive
- Apply Tolerances Liberally



## **Questions?**

