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Abstract 
The process challenges of lead free wave soldering often require the use of new flux chemistries when compared with the 
relatively tolerant tin-lead wave soldering process.  In some cases, the fluxes used in tin-lead soldering work well in lead free 
assembly.  In other cases, however, the complexity of the assemblies dictate more active, heat-sustainable products 
formulated specifically for lead free applications. 
 
This paper reviews the J-STD-004 and how it is used in flux categorization and selection.  It also discusses the major types of 
flux formulations available, and the design, process and reliability implications of using each type.  The purpose of the paper 
is to help the reader make an informed choice when selecting wave solder fluxes for lead free processing. 
 
Introduction 
When selecting a flux for wave soldering, many factors must be considered.  They include the electronic product’s 
performance environment, the complexity of the assembly, and the flux’s residues and their associated cosmetics.  These 
relate respectively to flux formulations in terms of their reliability requirements, activity and allowable activators, and their 
pin testability and appearance.  Tradeoffs exist in the selection process.  Fluxes that offer higher reliability may have lower 
activity or lower pin testability.  Fluxes with lower reliability may possess higher activity and better yields.  The word “may” 
is used because there are a myriad of formulation combinations to choose from, and each option has its own benefits and 
drawbacks. 
 
Wave solder flux is potentially the highest risk of the fluxes when compared to fluxes used in other steps of the PWB 
assembly process.  Consider solder paste: the flux is evenly applied only where needed during the stencil printing process, 
and if an acceptable solder joint is formed during reflow, the no-clean material has seen sufficient heat to render its residues 
non-corrosive in the localized areas where it was deposited.   Similarly, in hand or automated point-to-point soldering with 
cored wire, the flux in the solder wire is directly exposed to heat in the process and must have seen sufficient heat to actually 
flow from the solder wire to form the single joint.  The risks inherent to the fluxes used in wave soldering are due to the 
mechanics of the soldering process itself. 
 
Whether wave solder flux is sprayed, foamed, or waved, it is applied to the entire bottom side of the PWB, and some amount 
of material is deposited on the top surface of the PWB.  In fact, it is highly desirable to deliver flux all the way up the plated 
through holes of the assembly in order to facilitate hole fill of the molten solder.  But in the wave soldering process, the 
thermal exposures of the bottom and top sides of the PWB are not equal.  While it may be safe to assume that larger deposits 
of flux on the solder side of the PWB are rendered benign by their exposure to the solder wave, it may not be safe to make 
the same assumption about small deposits on the top side of the PWB because they did not experience the same thermal 
exposure.  This is particularly true for high density, complex assemblies. 
 
The transition to lead free wave soldering is driving many assemblers to select new fluxes for their processes.  The following 
information is provided to help guide the reader through the classification and categorization methods associated with fluxes.  
J-STD-004A, the Joint Industry Standard for Requirements for Soldering Fluxes1 which classifies fluxes on the basis of their 
composition and activity levels, is reviewed.  It is important to understand because it applies to all soldering fluxes used in 
electronics assembly.  When selecting a flux specifically for wave soldering, however, the user must also understand the 
basic product formulation approaches and how they affect processing and reliability.  A method of categorizing wave fluxes 
based on formulation approaches for various applications is presented.   
   
Flux Classification 
J-STD-004A addresses all forms of fluxes used in PWB assembly: paste, liquid, flux-cored solder wire, and flux-cored or 
flux-coated preforms.  It divides all fluxes into one of four classes based on their composition.  
 
As originally described by Alvin Schneider in 19972, the flux composition categories and their symbols are: 



 
 

Rosin (RO) 
Resin (RE) 
Organic (OR) 
Inorganic (IN) 

 
Each composition category is then subdivided into six flux activity levels according to the corrosive or conductive properties 
of the flux and its residues.   
 
Flux activity levels are determined by results for copper mirror testing, corrosion testing, surface insulation resistance (SIR), 
electrochemical migration (ECM) and halide content.  The three main activity levels are: 
 

L Low or no flux/flux residue activity 
M Moderate flux/flux residue activity 
H High flux/flux residue activity 

 
These three activity levels are further characterized by using a 0 or 1 to indicate the absence (0) or presence(1) of halides in 
the flux.  This results in six classifications. 
 

L0 
L1 
M0 
M1 
H0 
H1 

 
When the 4 composition classes and 6 activity levels are taken together, the result is 24 classifications.  Table 1, taken from 
J-STD-004A lists the 4 composition categories in the first column and the 6 flux activity levels/flux types in the second 
column, and their resulting 24 classifications with their “flux designator” symbols in the fifth column. 



 
Table 1 - Flux Classification as described in J-STD-004A.  Note that inorganic fluxes are not used in electronics 

assembly. 
 

Flux Materials Flux/Flux Residue % Halide Flux Flux 
of Composition  Activity Levels (by weight) Type Designator

0.0%* L0 ROL0
< 0.5% L1 ROL1

ROSIN 0.0% M0 ROM0

(RO) 0.5-2.0% M1 ROM1
0.0% H0 ROH0

>2.0% H1 ROH1
0.0% L0 REL0

< 0.5% L1 REL1

RESIN 0.0% M0 REM0

(RE) 0.5-2.0% M1 REM1
0.0% H0 REH0

>2.0% H1 REH1
0.0% L0 ORL0

< 0.5% L1 ORL1

ORGANIC 0.0% M0 ORM0

(OR) 0.5-2.0% M1 ORM1
0.0% H0 ORH0

>2.0% H1 ORH1
0.0% L0 INL0

< 0.5% L1 INL1

INORGANIC 0.0% M0 INM0

(IN) 0.5-2.0% M1 INM1
0.0% H0 INH0

>2.0% H1 INH1
* 0.0% is defined as <0.05% by weight

 Low 

 Moderate

 High 

 Low 

 Moderate

 High 

 Moderate

 High 

 Low 

 Moderate

 High 

 Low 

 
 
The second and third columns of Table 1 relate to activity levels, which are determined with the following tests: 
  

Copper Mirror Test:   This test checks the removal effect of the flux on a 50 nm film of copper that 
has been vacuum deposited on glass.  A drop of test flux and a drop of control 
flux are placed on the copper mirror and conditioned at 23oC and 50% RH for 
24 hours.  The results are observed and reported as shown below in figure 1.3 

 
Figure 1.  Copper Mirror Test results 
 

Qualitative Halide: Qualitative halide tests indicate absence or presence of halides.  If no halides 
are detected, the quantitative halide tests are not necessary. 
 

   -   Silver Chromate: A drop of the test flux is applied to paper treated with silver chromate.  If 

<50% 
break- 
through 

>50%break through No break through 



 
chlorides or bromides are present in the sample, the paper changes from a 
reddish color to an off-white, as shown in figure 2.4 

 
Figure 2.  Silver chromate test results 

 
   -   Spot Test: A drop of test flux is placed in a zirconium-alizarin liquid, which has a purple 

color.  If fluorides are present in the sample, the liquid changes color from 
purple to yellow. 5  
 

Quantitative Halide: Quantitative amounts of chlorides, bromides, or fluorides can be determined by 
ion chromatography. 
 

Corrosion Test: This test checks the corrosiveness of the flux’s residue under extreme 
environmental conditions.  A pellet of solder is melted on a copper test panel 
with the test flux.  It is then exposed to 40oC and 100% RH for ten days and 
visually examined for signs of corrosion.6 

 
100 Megohm SIR: The Surface Insulation Resistance test checks the resistance of the flux or its 

residues when exposed to high heat and humidity.  Test flux is applied to 
copper patterns on FR-4 test coupons, processed, and placed in an 85oC and 
85% RH environment where they are exposed to a -48V voltage bias for 7 
days.  Resistance measurements must be over 1x108 ohms on measurements 
taken on day 4 and day 7.  Specimens are processed in accordance with the test 
standards, depending on the intended end use of the flux.7     
 

ECM: The electrochemical migration test checks the propensity of flux residues to 
allow electrochemical migration, such as dendritic growth which can cause 
shorts, under severe service conditions.  Test flux is applied to copper patterns 
on FR-4 test coupons (different from SIR coupons) and exposed to 65oC and 
85% RH for 4 days without a voltage bias.  Surface insulation resistance is 
measured.  The test coupons remain in the 65/85 environment with a 10V bias 
applied for 500 hours and SIR is again measured.  The geometric means of the 
SIR readings are calculated and compared.  A “pass” condition is met if the 
final reading is greater than or equal to 10 % of the initial reading.8 

 
The description of the tests for flux activity levels is intentionally brief.  The reader should consult the prevailing documents, 
which are noted in the “References” section of this paper, for complete test methods and details.   
 
The results of these tests are applied to fluxes as shown below in Table 2. 
 

Table 2 - Requirements for establishing flux activity levels/flux types.  The actual table in J-STD-004A has eight 
 

QUANTITATIVE 
HALIDE CONDITIONS FOR 

SILVER SPOT PASSING 100 CONDITIONS FOR
FLUX COPPER CHROMATE TEST CORROSION MEGOHM SIR PASSING ECM
TYPE MIRROR (Cl, Br) (F) (Cl, Br, F) TEST REQUIREMENTS REQUIREMENTS

L0 No evidence of Pass Pass 0.0% No evidence of

L1 mirror breakthrough Pass Pass <0.5% corrosion

M0 Breakthrough in  Pass Pass 0.0% Minor corrosion Cleaned or Cleaned or

M1 < 50% of test area Fail Fail 0.5 to 2.0% accpetable Uncleaned Uncleaned

H0 Breakthrough in Pass Pass 0.0% Major corrosion

H1 > 50% of test area Fail Fail > 2.0% acceptable

QUALITATIVE HALIDE

Cleaned Cleaned 

Uncleaned Uncleaned

 
 
footnotes that should be consulted for additional information. 
 



 
J-STD-004A describes how fluxes are classified by their composition and activity type.  Although it offers guidance on 
activity and reliability tests, it does not offer guidance on how to select the proper material for particular applications.  The 
authors propose a system of categorizing wave solder fluxes based on their formulation characteristics, with a perspective on 
processing, end-use, and reliability. 
 
Flux Categorization Based on Formulation 
From a formulation perspective, fluxes can be categorized in the following order: carrier type, rosin presence, activity, and 
halide content.  Figure 3 depicts the suggested breakdown: 
 

Flux Formulation Categories
Wave Solder 

Fluxes
Water-Based Alcohol-Based

Rosin-Containing Rosin-Free Rosin-Containing Rosin-Free

Water Soluble Water SolubleNo-Clean No-CleanNo-Clean

Halide

No-Clean

Halide Halide Halide Halide Halide

No Halide No Halide No Halide No Halide No Halide No Halide

 
 

Figure 3 - Wave solder flux types categorized by formulation 
 
The carriers or solvents, the materials which hold all the other active flux constituents in solution, are primarily alcohol or 
water.  Alcohol-based fluxes have the advantages of being able to easily dissolve ingredients, exhibit low surface tension 
which facilitates wetting, and are easy to dry in the preheat portion of the process, but they also carry the drawbacks of 
flammability and high Volatile Organic Compound (VOC) emissions.  To the contrary, water-based fluxes do not bear 
flammability risks nor emit large quantities of VOC’s, but they have lower solvency, higher surface tension, and are more 
difficult to dry off in preheat.  Furthermore, the post-soldering residues from water based fluxes can be hygroscopic and 
therefore exhibit lower reliability. 
 
Rosin (or resin) presence is the second tier of categorization, and it applies to both alcohol- and water-based fluxes.  The 
inclusion of rosin in a flux formulation determines the nature of its residue from both electrochemical and cosmetic 
perspectives.   Rosin permits greater activity in a flux because it encapsulates and renders harmless any ionic materials such 
as chlorides, bromides, or unreacted acids left in the residues that may otherwise cause reliability concerns.  Rosin itself is an 
activator at soldering temperatures, as it is a mixture of various long chain high molecular weight acids which react with 
metal oxides.  It is dissolved into the carrier solvent along with other active materials during flux manufacture.  When heated 
in the soldering process it becomes molten and acts as a thermally stable aid to the soldering process, and when cooled it 
solidifies to act as a hydrophobic encapsulant to any ionically active ingredients which may not have volatilized during the 
soldering cycle.  This encapsulating action allows formulators to produce relatively aggressive fluxes for high soldering 
yields, without compromising on post soldering reliability.  Rosin-bearing fluxes are preferred for low-cost, paper-based 
laminates that tend to absorb fluxes into the PWB substrates.   
 
A note on the terminology of rosin and resin: rosins are a subset of a larger chemical family of resins.  Rosins are substances 
that occur naturally (in pine trees and other plant material) and have been extracted and refined.  Resins are similar 
compounds that are either completely synthesised, or are highly processed rosins.  Although the J-STD-004A classification 
system differentiates rosin-containing fluxes from resin-containing ones, when categorizing flux product families and end-



 
uses in the remainder of this discussion, both rosin and resin fluxes are grouped together and collectively referred to as 
“rosin-containing” or “rosin-bearing.”  
 
Common issues associated with rosin-containing fluxes are related to the physical appearance of the residue which gets left 
on the board surface - it can create handling issues and hamper pin testability of the final assembly.  There are several ways 
to proactively address these potential pitfalls.  Residues from fluxes that contain rosin are often perceived as sticky or tacky.  
When using modern rosin-bearing formulations, the assembly should not feel sticky or tacky after it has cooled to room 
temperature.  If it does feel tacky, that is an indicator that either a) too much flux is being applied, or b) the wave soldering 
process is being run “cool.”  Flux deposition rates should be determined by process engineering, and controlled by regular 
checks during production.  Of all the processes involved in PWB assembly, wave solder fluxing is one of the most critical to 
maintain control over, as it can present the greatest reliability hazards if it gets out of control.    
 
Poor pin testability can also be the result of too much flux on the board.  Rosin-bearing flux products are specifically 
measured for pin testability during their development and are designed to meet certain pin testability standards as a 
requirement for their commercialization.    If extremely poor probe contact is experienced at in-circuit test, it is often the 
result of too much flux applied during the wave soldering process.  Again, proper process control can prevent this loss.  To 
maintain low ambient levels of false failures on a regular basis when using rosin-bearing fluxes, best practices should be 
employed at in-circuit test.  Test probes should be shaped appropriately for their corresponding test points, and probe/fixture 
cleaning and maintenance schedules should be adhered to.      
 
Fluxes without rosins produce very minimal residues, excellent cosmetics and improved pin testability, but they must be 
applied under well controlled processes.  In the preheat and soldering process, fluxes are activated and then deactivated by 
the thermal excursion to which they are exposed.  If flux is applied where it may not get fully activated and deactivated, e.g. 
overspray that lands on the top surface of the PWB, the underprocessed (activated but not deactivated) flux residues can 
cause reliability problems in the end use environment.  Laminate material must be considered when selecting a rosin-free 
flux, as it is generally not recommended for porous, paper-based products.   
 
Electrochemical activity of the flux’s residue determines the third tier of categorization: water washable or no-clean.  A flux 
categorized as “water washable” is corrosive and must be fully cleaned off after soldering.  Most water washable fluxes 
contain halides and strong organic acids that are active at room temperature and do not get fully depleted during wave solder 
processing.  If they were to remain on the assembly after soldering, they would continue to act on the metals in the circuits, 
ultimately causing failure.  Because the fluxes are fully cleaned after soldering, options for the formulator are not as limited 
as they are in no-clean products, and water washable fluxes are usually the most highly active, effective ones available.  The 
obvious drawbacks of water washable fluxes are that they do need to be washed, which adds cost to the assembly process, 
and that if they are not properly washed, reliability concerns will abound. 
 
While no-clean fluxes reduce cost by minimizing process steps, their activity levels are limited by the need for post-soldering 
reliability.  They must be formulated to become deactivated in the wave soldering process so that their residues will be 
electrically acceptable.  Because they are designed to fully activate and deactivate in typical soldering cycles, a cycle that is 
too short may not render the residues benign, and one that is too long may spend all the activators before the assembly 
reaches the wave.  If the activators are spent during preheat, the unavailability of active materials leads to poor solder joint 
quality.  The need to properly activate and deactivate no-clean fluxes narrows their process window when compared to water 
washable products.  It also narrows formulation options by limiting the list of allowable ingredients when compared to water 
washable chemistries. 
 
The fourth and final tier of flux categories is presence of halides.   Halides are often used as activators because of their ability 
to rapidly reduce metal oxides.  Halides can be used as high performance activators, but they can also be the root cause of 
post soldering corrosion, so many users try to avoid them.  Halide-free fluxes are perceived as safer, but are generally less 
active and exhibit poorer wetting performance. 
 
Other Considerations 
Other flux formulation constituents which play an important role in performance, but are not specifically cited in the 
categorization process described above include surfactants.  Surfactants help the flux spread across the PWB and promote 
capillary action up into the plated through holes by lowering the liquid’s surface tension.     
 
To simply demonstrate the effect of surface tension on the spread of liquid flux on solder mask, a drop of each deionized (DI) 
water and 99.9% ispoproyl alcohol (IPA) were placed on an unpopulated area of a PWB.  The surface tension of DI water is 
73 dynes/cm.  The surface tension of is IPA 22-23 dynes/cm.  While the water remained in a single bead exactly where it was 



 
dropped (figure 4), the alcohol spread out so quickly it could not be captured in a photograph.  The water and IPA were then 
sprayed onto the same PWB substrate.  Figure 5 shows the materials immediately after they were sprayed. 
 

 
 

Figure 4 - A drop of deionized water on an unpopulated area of the PWB.  Notice how the water beads up on the 
solder mask. 

 

  
 
Figure 5 - Deionized water and alcohol sprayed on PWB substrate.  The sprayed water droplets are smaller than the 

one dispensed from a pipette shown in figure 4, but the alcohol’s superior spread is visibly evident. 
 
To illustrate the effect of surfactants on water, a drop of each DI water and water based no-clean flux whose surface tension 
was modified with surfactants (Alpha EF-2202) were placed on the PWB.  The results can be seen in figure 6. 



 

 
 
Figure 6 - A drop of DI water and a drop of water-based flux on PWB solder mask.  The surface tension of the water-

based flux has been lowered by surfactants. 
 
The drop of liquid on the left is DI water and the one on the right is water-based flux.  The wetting (or dihedral) angle, 
although not accurately measurable in this simple demonstration, is visibly much higher on the DI water droplet due to its 
higher surface tension.  Although surfactants can help decrease the surface tension of water-based flux products, they can 
never lower it enough to be equal to that of IPA without creating reliability hazards. 
 
One major consideration in flux development for lead free wave soldering is not directly related to the new alloys, but to the 
increases in operating temperatures and PCB contact time with the wave.  It is not uncommon for contact time to be increased 
by more than 50%, and wave temperatures to be 25°C higher than in a SnPb process, so activators need to continue to work 
throughout this increased exposure.  To adequately solder both tin-lead and lead free products, no-clean fluxes must now 
operate in an extended temperature range, maintaining reliability in the cooler tin-lead cycles and activity in the hotter lead 
free cycles.   
 
Traditionally, acid number has been viewed as being directly related to the “available activity” in a flux.  This is no longer 
always true, as newer formulation methods have produced some exceptions to the rule.  Some fluxes with a high acid number 
will perform badly in a lead free process, as they are not thermally stable and are burnt off early, allowing oxide formation 
and subsequent soldering defects.  Some fluxes with low acid numbers have other constituents which support activity, and 
will perform better.  When selecting a flux for lead free soldering, the acid number of a flux should no longer be used as a 
primary indicator of activity.   
 
Post soldering reliability can be assessed and graded by one of many International standards.  The IPC J-STD grading system 
is considered the minimum requirement for many applications.  Beyond this, the Telcordia test methods (previously Bellcore) 
are considered to be more stringent.  Many fluxes pass the Telcordia electromigration test, but a considerable number fail the 
SIR test.  Although the Telcordia SIR test is performed under different conditions than the IPC test, its minimum resistance is 
three orders of magnitude higher, at 1 x1011Ω.  Reaching further is the Japanese Industrial Standard (JIS); passing this 
reliability test can usually only be achieved with the inclusion of rosin in the flux. 
 
Factors in Flux Selection 
Usually, the primary factors in flux selection are the performance environment of the electronic product and the assembly 
complexity, with residue cosmetics also weighing in.  Higher performance environments typically dictate higher degrees of 
reliability in the flux material, while lower performance environments generally allow lower reliability.  Higher complexity 
assemblies usually require higher activity fluxes which are more thermally stable.  Residue levels and cosmetics can be a 
concern for operations that pin test or for products that are visible to customers or end-users. 
 
In some cases, the location of the manufacturing site also figures into the flux selection process, as some geographic areas 
limit the amount of VOCs that a manufacturing facility may release to the environment.  In the case of geographic 
environmental sensitivity, low-VOC or VOC-free fluxes are preferred.  A word of caution to the reader: while all low- or no-
VOC fluxes are water-based, not all water-based fluxes are low- or no-VOC.  The user should not assume that a water-based 
flux will automatically meet their local environmental requirements; they should inquire with the supplier regarding the VOC 
content of their water-based flux materials.  EPA method 24 provides the test protocols for determining VOC content.  To be 



 
considered “VOC-free,” the product must contain less than 1% volatile organic compounds by weight.  Although there is no 
globally accepted standard definition for “low-VOC,” it is usually considered to be less than 5%. 
 
Typical Applications 
At first glance, it might appear that only several combinations of formulation chemistries would be sufficient to meet all 
requirements and applications. Realistically, however, when all the technical and cosmetic requirements are factored 
together, the end result is multiple product choices even within formulation sub-categories.  In other words, there is no “one 
size fits all” solution.   This can be particularly frustrating for contract electronics manufacturers and others who build a wide 
variety of product types.     
 
When selecting a wave solder flux, the three major areas of consideration are typically:  

(i) end use environment/reliability  
(ii) assembly complexity  
(iii) residue/residue cosmetics   

If these considerations are applied to different market segments of electronics assemblies, it becomes easier to understand 
how the end-use of the product affects both the in-process requirements and the in-service requirements, and the tradeoffs 
that may exist between manufacturability (solder processing and testing) and reliability. 
 
The IPC Joint Industry Standards9 has tried to capture all assembly types into 3 categories.  These categories are defined as 
follows  
 
Class 1 - General Electronic Products 
Includes products suitable for applications where the major requirement is function of the completed assembly, such as home 
consumer electronic products.   
 
Example of Class 1 Product: Home Consumer Electronics  
The consumer electronics sector commonly uses paper-phenolic laminates.  Assemblies are often glued SMT devices with 
radial and axial through-hole components.  Assembly cost is a big consideration, but the combination of low cost laminates 
with some flux types poses a serious reliability hazard during the early service life of the product. In particular, rosin-free 
fluxes provide risk, as the porous paper laminate (such as FR-2 or CEM-1) will absorb the flux upon application.  Once the 
carrier has dried off there is a risk that un-reacted activators remain embedded within the laminate, which when dissolved by 
condensation in service, could form an electrolyte and cause electromigration and eventual product malfunction.  This risk is 
easily mitigated by the use of rosin-bearing fluxes.  Any unspent activity is safely encapsulated in rosin.  The use of rosin-
bearing fluxes allows the use of low cost laminates, without introducing a reliability hazard. 
 
Many products in this sector are assembled by OEM’s and are never visible to customers or end-users during their service 
life.  Therefore, residue cosmetics are not a big consideration and relatively higher levels of residue are acceptable.  The 
preferred flux type for home and consumer electronics are rosin-bearing, alcohol-based fluxes, which allow for the high 
activity levels (often including halides) needed to cope with the soldering demands of low cost components and PCB’s. The 
rosin maintains high residue dielectric strength, even in damp conditions.  Recall that the inclusion of rosin in flux can lead to 
increased false failure rates at pin testing operations, especially if too much flux is applied during soldering.  For best results, 
flux deposition should be monitored and test point-appropriate probe types should be used for in-circuit testing.  
Classification of these fluxes according to the J-STD-004A would be ROL0, ROM0, REL0, and REM0 for fluxes without 
halides, and ROL1, ROM1, REL1, and REM1 for fluxes with halides. 
 
As some of the products in this class now possess more functional sophistication, the use fibreglass-based laminates like FR-
4 is starting to become more popular.  In the case of FR-4 substrate material, the assembler is no longer required to use rosin-
bearing fluxes to insure reliability.  Although the FR-4 substrate opens the choices for different flux formulations, the 
solderability of low cost components may still be a consideration.   In this case, it is not uncommon to choose organic fluxes.  
These fluxes would be designated ORL0 or ORM0. 
 
Notice that ORL1 and ORM1 are not offered as options.  Halides are not combined with organic fluxes for electronics 
assembly, due to their corrosive nature.  They can be safely used in combination with rosin-bearing fluxes, because of the 
encapsulation effect of the rosin.  The use of halides in a formulation without rosin is what flux formulators refer to as a 
“recipe for disaster.” 
 
Class 2 - Dedicated Service Electronic Products 
This includes products where continued performance and extended life is required, and for which uninterrupted service is 
desired, but not critical. Typically the end-use environment would not cause failures. Included here would typically be 



 
computers, industrial and telecommunications equipment, and automotive electronics (except for engine management, drive-
train and safety-related components.) 
  
Example of Class 2 Product : IT/Telecom Infrastructure  
The most complex assemblies reside in this sector. Most of the production is double-sided SMT reflow followed by wave, or 
SMT reflow followed by SMT glue cure, followed by wave.  In both cases the assemblies will have been subjected to two 
thermal excursions prior to wave soldering.  These types of circuit assemblies are typically the most heavily populated and 
thermally dense, having both high component and high layer counts.  The oxidation on the solderable surfaces that results 
from the prior heat cycles combines with the high thermal density of the PWB to create a considerable soldering challenge 
for flux.  To exacerbate the challenge, much of the production in this sector is performed by CEMs, and cosmetic 
acceptability of the residue becomes a consideration. Low residue levels are almost always mandatory. 
 
The prior thermal excursions, high complexity, and need for low residues in the computer/IT infrastructure sector indicates 
an active, low solids material which is not overly sensitive to preheat levels.  Fluxes can be water- or alcohol-based.  Water-
based fluxes are preferred in geographic regions that control VOC emissions, but are more sensitive to preheat in that they 
require more heat energy to drive off the water.  Wave solder equipment should be configured with multi-zoned preheats 
(preferably including topside preheat) with one or more convection zones to effectively accomplish this. Alcohol fluxes are 
less machine dependent and do not necessarily require convection pre-heat.  The low residue levels and the frequent use of 
pin-testing dictate rosin-free products.  Common flux types used in this sector include low solids, rosin-free fluxes with high 
activity levels.  These would be classified as ORL0 and increasingly ORM0.   
 
Again, on an FR-4 PWB construction the OR-- category flux type is acceptable, but on paper-phenolic laminates it could 
present a reliability hazard.  Although FR-2 is sometimes used in telecom desktop products, it is seldom used in infrastructure 
components.  If both product families are assembled in the same facility, two different fluxes may be required. 
 
Class 3 - High Performance Electronic Products 
This encompasses products where continued high performance or performance-on-demand is critical, equipment downtime 
cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required. This 
would typically include military weapon and defense systems, aerospace, life support systems and under-the-hood 
automotive electronics. 
 
Example of Class 3 Product: Automotive Electronics 
From an assembly perspective, automotive electronics are of moderate complexity.  Electronics designers tend not use 
smaller components unless absolutely necessary.  The overriding consideration in the design is for electrical and mechanical 
reliability.  PCB area is usually small, with a low layer count (less than 8) due to lower interconnection densities when 
compared to many Class 2 products.  PCB’s are commonly an FR-4 epoxy glass construction with plated through holes.  The 
key requirements for this sector are to achieve a high yielding and consistent soldering process while guaranteeing 
electrochemical reliability under relatively high voltage and harsh environmental conditions.  The reliability requirements 
point toward a rosin-based, halide-free flux.  The rosin provides consistently high-yielding soldering and long-term 
reliability.  Typically this type of manufacturing process is well controlled, and problems associated with applying too much 
rosin-based flux are not often encountered.  Halides are typically not required to achieve good soldering on this type of 
product, and the absence of halides improves the reliability of the flux’s residue.  Water-based fluxes may be used, but 
alcohol-based fluxes are generally preferred because they are more preheat-compatible and their better wetting can improve 
hole fill.  The most logical selection for lead free automotive assemblies - alcohol-based, rosin-bearing, halide-free flux. – 
would be classified as ROL0, ROM0, REL0 or REM0. 
 
Conclusion 
There are many types of wave solder flux available to assemblers.  To aid in differentiating and describing the flux types, J-
STD-004A can be used.  To determine which type of flux is best for a given product or process, particularly when 
transitioning to lead free, the user must consider the construction and end use of the product and understand the implications 
of activity, reliability, and residue cosmetics on the final assembly. 
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