NOVACENTRIX

Photonic Curing: Broad Implications in Printed Electronics

Kurt A. Schroder, Chief Scientist February 2013

NovaCentrix in the Supply Chain

2013

Printed Electronics Manufacturing

INFORMATION that INSPIRES INNOVATION

What is photonic curing?

The Power of Light

PulseForge[®] Origins: Photonic Curing

2013

Photonic Curing Demonstration ACENTRIX

PulseForge® Toolset

PulseForge® Tool Background

Concept

Innovation

Enabling new value

2013

>10 exposure parameters Pulse lengths <25 micro sec Digital exposure setting input Uniformity better than +/-2% Water-cooled Configurable width >4meters Touch-screen interface R2R in excess of 100m/min Long-lived guick-change lamps

- The PulseForge 3300 (pictured) represents state-of-the-art processing capability.
 - Metals, semiconductors, ceramics on polymers and paper, glass ,quartz, others
- "Photonic Curing" was coined by NovaCentrix and first published in 2006 to describe the use of flash lamps to selectively heat functional inks without damaging low-temperature substrates.
- NovaCentrix has patented this technology, having over a dozen unique filings worldwide with issuances in the US (#7,820,097), Canada (#2,588,343), and China.

Why does photonic curing work?

Typical Application

Common Application Structure

Common Exposure Condition

Energy: Pulse Exposure: 1 J/cm² 300 microsec

Typical Single-Pulse Thermal Profile

- High temperature processing removes excess solvent and enhances sintering.
- Substrate is undamaged.

Key Processing Parameters

Material Characteristics

2013

- Thermal / physical properties of ink and substrate
- Film/ ink thickness
- Particle morphology
- Substrate composition and thickness
- Barrier or intermediate layers

Sample Inkjet Deposition

- ~500 nm thick

Tool Adjustability Requirements

- Pulse energy/ amplitude
- Pulse duration
- Impinging wavelengths
- Number of pulses
- Speed of pulses
- Other parameters

Sample Screen-print Deposition

Micron flake screen print - ~5-30 microns thick

A Brief Detour: The use of simulation

SimPulse[™]: PET Substrate @150 microns

Substrate	Delivered	Max	Thermal	Mass	Specific	Thermal
	Energy	Temp	Cond	Density	Heat	Diffusivity
	(J/cm ²)	(C)	(W/mk)	(g/cm)	(J/kgK)	(m²/s)
PET	1	1150C	0.24	1.4 g/cm ³	730	2.35E-7

SimPulse[™]: PET Substrate

INFORMATION that INSPIRES INNOVATION

Substrate	Delivered	Max	Thermal	Mass	Specific	Thermal
	Energy	Temp	Cond	Density	Heat	Diffusivity
	(J/cm ²)	(C)	(W/mk)	(g/cm ³)	(J/kgK)	(m²/s)
PET	1	1150	0.24	1.4	730	2.35E-7

SimPulseTM: Glass Substrate

Substrate	Delivered	Max	Thermal	Mass	Specific	Thermal
	Energy	Temp	Cond	Density	Heat	Diffusivity
	(J/cm ²)	(C)	(W/mk)	(g/cm ³)	(J/kgK)	(m²/s)
Borosilicate glass	1	450	1.14	2.2	820	6.32E-7

SimPulse[™]: Glass Substrate

Substrate	Delivered	Max	Thermal	Mass	Specific	Thermal
	Energy	Temp	Cond	Density	Heat	Diffusivity
	(J/cm ²)	(C)	(W/mk)	(g/cm ³)	(J/kgK)	(m²/s)
Borosilicate glass	2.6	1100	1.14	2.2	820	6.32E-7

SimPulse[™]: p-Si Substrate

Substrate	Delivered	Max	Thermal	Mass	Specific	Thermal
	Energy	Temp	Cond	Density	Heat	Diffusivity
	(J/cm ²)	(C)	(W/mk)	(g/cm ³)	(J/kgK)	(m²/s)
p-Si	1	85	140	2.3	751	8.105E-5

SimPulse™: p-Si Substrate @150 microns

Substrate	Delivered	Max	Thermal	Mass	Specific	Thermal
	Energy	Temp	Cond	Density	Heat	Diffusivity
	(J/cm ²)	(C)	(W/mk)	(g/cm ³)	(J/kgK)	(m²/s)
p-Si	23	1150	140	2.3	751	8.105E-5

How can photonic curing be used? Drying and sintering

Example: Processing DuPont Silver Flake Ink

Material Set-up

- Ink:
- Substrate:
- Ink thickness:
- Sheet resistance:
- Cure Conditions:
 - Conventional:
 - PulseForge tool process:

Dupont 5025: silver flake (micron scale), organic binders Melinex 329 (white), temperature limit ~150C

- ~10 microns
- <10milliOhms/sq

~140C, 10-30 minutes

~500C, ~1 millisecond

Depiction of processing result: Good flake contact for electrical conductivity

The Importance of Configurable Pulses

2013

Ugly

How can photonic curing be used? Drying and sintering Enabling the use of new materials via in-situ reactions.

Cost Reduction Using Copper Inks

- Good
 - Cu costs 100X less than Ag

2013

- Cu has 90% of the conductivity of Ag
- Bad
 - True Cu inks want to oxidize, especially nanoparticle inks
 - Stable nanoparticle inks of true Cu are usually expensive, outweighing cost benefits
 - New Approach

Metalon ICI ink processed on coated PET with PulseForge tools

\$75/kg in

volume

- Instead of fighting oxidation, begin with particles in their terminal state: fully oxidized.
- CuO ink formulation:
 - Nano CuO
 - Reduction agent
 - Water and ethylene glycol
- Converts to conductive Cu during PulseForge processing.
- Initially developed for paper (smart packaging), now being adapted for nonporous substrates (photovoltaics, other apps)

Metalon® ICI CuO Screen Ink

Case Study: Screen CuO on Paper

Material System Ink material: Substrate: Print method:

2013

Metalon ICI-021 CuO screen print Standard 110 lb. cardstock 165 mesh screen

Cure Condition	PulseForge	
Temperature	NA	AIR DRIED AT ROOM TEMPERATURE
Time	5.5 millisec	
Resulting sheet resistance	<20 mΩ/sq	PROCESSED WITH PULSEFORGE® TOOLS
Comments:	 Cure speed 75 fpm in ambient air conditions Cannot be cured in ordinary oven 	

How can photonic curing be used? Drying and sintering Enabling the use of new materials via in-situ reactions.

2013

Better execution of existing applications

Application : RFID

Design:ImFreq:UInk:MSubstrate:17Chip:M

Impinj[®] E42i* UHF 800-1000 MHz Metalon[®] ICI-021 110lb paper Monza 4

* Used under license

ICI-021

Application : RFID

2013

Design:	Impinj® E42i
lnk:	Metalon® IC
Substrate:	110lb paper
Chip:	Monza 4

Read range:

5.5 meters

1

LEGEND

Impinj E42 Inlay 1

Impinj E42 Inlay 2

Impinj E42 Inlay 3

Impinj E42 Inlay 4

Impinj E42 Inlay5

Impinj E42 Inlay 6

Impinj E42 Inlay 7

Impinj E42 Inlay 8

Impinj E42 Inlay 9 Impinj E42 Inlay 10

Application : RFID

2013

Design:	Impinj [®] E42i
nk:	Metalon® ICI-02
Substrate:	110lb paper
Chip:	Monza 4

ICI ink

5.5 meters

Peaks at 7 meters, drops to 4.5

Read distance now at 7 meters with ICI ink matches etched aluminum

Etched aluminum

Application : RFID

2013

Design:
lnk:
Substrate:
Chip:

Impinj[®] E42i Metalon[®] ICI-021 110lb paper Monza 4

Cost Comparison

	ICI screen ink	Silver screen ink	
Ink cost/ kg	\$75	\$1000	
Ink cost/tag	\$0.003	\$0.012	
Paper cost/ tag	\$0.0008		
PulseForge equipment cost/tag	\$0.0002		
Total	\$0.004	\$0.013	

Introducing the PulseForge® 1200 for R&D

2013

Immediate availability

- Low-priced PulseForge tool for R&D.
- Self-contained high power photonic curing system with automated linear stage.
- Same controls and power as industrial PulseForge systems but with smaller area and lower throughput.
- Direct translation of machine settings to industrial PulseForge tools.

Summary

N that INSPIRES INNOVATION

• Photonic curing uses high-intensity flash lamps to selectively heat target materials.

- The PulseForge tools are based on the patented use of photonic curing and are designed for use in development and production.
- Photonic curing is used for drying, sintering, reacting, and annealing. The use of the tools enables exciting new types of materials to be used in printed electronics, such as the copper oxide reduction inks.
- The Metalon ICI series of copper oxide reduction inks are formulated with a reducing agent to convert copper oxide to copper thin film on the substrate after printing. Sheet resistance < 20 mOhm/sq.
- Applications impacted include RFID, displays, photovoltaics, sensors, and others.
- Many opportunities for innovation and competitive advantage are still open.
- We have introduced an R&D photonic curing system, the PulseForge 1200, to accelerate this development.

• Contact our partners or us directly with questions or for samples processing

<u>www.novacentrix.com</u>

Charles Munson

CEO/ President

Ph: 214 954 0260

charles.munson@novacentrix.com

Stan Farnsworth

VP Marketing

Ph: 512 491 9500 x210

stan.farnsworth@novacentrix.com

