"Why Signal Always Be Loss in a High Speed High Frequency Transmission Line"

Albert Chen
Elite Material Co., Ltd.
Taiwan, ROC

Abstract:

The high speed transmission applications in the electronic product become inevitable developing trend. The signal integrity becomes the most important issue in the electronic industry. The material suppliers, PCB manufactures, OEM designer commonly face the serious issue "how to keep signal integrity operated in the high speed transmission" for the modern electronic application nowadays.

The material suppliers dedicated into developing lower dielectric constant and dissipation factor material, PCB manufactures define the low loss material and copper foil selection guide and more delicate process handling. The OEM specify the signal integrity form the insertion loss and extracted material Dk / Df from signal loss result . All of these are for keeping signal could be transmitted completely at higher bandwidth. We discuss the following factors affect insertion loss result in this paper , such as material Dk / Df , copper foil type , skin effect, impedance variation , line width , line space, black / brown oxide treatment, dielectric thickness , via stub effect and so on through TDR and VNA measurement and simulation analysis result .

We hope we could more understand the mystery of signal loss issue through these discussions and meet the signal loss specification from the OEM designer.

Introduction

Nowadays, we could easily find there are many modern electronic products using high speed technology around us, such as USB (universal serial Bus) and SATA (serial advanced technology attachment) for higher data rate transmission, HDMI (high definition multimedia interface) and display port for higher resolution on the multimedia. Besides that the handling frequency of Intel CPU processer double every two years. It means that PCB with low loss characteristic would play a very important role for high speed transmission application.

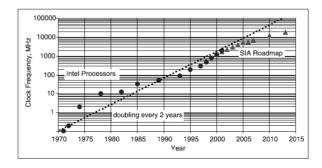


Figure 1 - Historical trend in the clock frequency of Intel processors based on years of introduction (Source: Intel Corp and SIA (semiconductor Industry Association))

OEM signal integrity requirement review

For achieving more better signal integrity could be operated completely at higher frequency, OEMs specify their own methodology to identify the signal integrity in the form of insertion loss or extracted dielectric constant and dissipation factor from insertion loss.

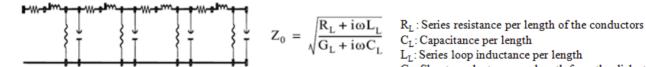

	IBM	Intel	Cisco
Methodology	SPP	SET2DIL	S 3
Frequency concern	1GHz	4, 8GHz	10GHz
Impedance pattern	50 Ohms single end stripline	85 Ohms signal end to differential pair insertion loss	50 Ohms single end stripline
instrument	TDR	TDR	VNA
Purpose	Insertion loss and	Insertion loss	Insertion loss and
ruipose	extracted Dk Df	mseruon 1088	extracted Dk Df

Table 1 - Specific insertion loss evaluation by different OEMs

Others rely on VNA measurement for insertion loss/return loss by their own methodology.

Transmission line in PCB

It is known that ideal transmission line could be used following elements such as resistance, capacitance, inductance and conductance to stand for the transmission behavior at high frequency. The capacitance and inductance belong to energy storage elements; however, the serial resistance of copper resistance and shunt conductance from dielectric are energy loss elements in the transmission line. In the PCB, we use the microstrip and stripline structure to represent the transmission line with specified material property and geometry structure. In the signal attenuation discussion, the dielectric conductance and copper resistance are two main elements to cause signal loss at high frequency, since the dielectric conductance and copper resistance would varied with the frequency.

Gt: Shunt conductance per length from the dielectric

Figure 2 - RLGC model for an ideal lossy transmission line

Note:

- 1. In an ideal transmission line, R and G are energy dissipated element, L and G are energy stored element, R is the source of conductor loss, and G is the source of the dielectric loss.
- 2. The characteristic impedance of a lossy transmission line is shown as the above formula.
- 3. The RLGC value is related the material property and geometry.

The transmission line in a PCB stack up could be represented by following models; every model has specific formula for the

impedance calculation in a transmission line.

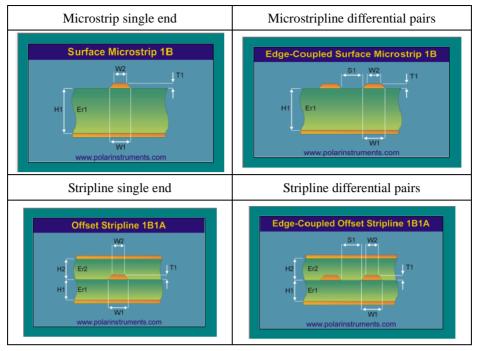


Figure 3 Typical Microstrip and Stripline structure for PCB (source: Polar Instruments Ltd)

In a multilayer board, a good transmission line should be well controlled that its characteristic impedance is constant everywhere down its length. If a controlled impedance board is that the characteristic impedance of all the traces meets a target spec value, typically 50 Ohms or 85 Ohms. Does it mean that it can always be having good quality all the time, especially for higher speed or higher frequency? The answer is depending on situation.

Why we get poor result of insertion loss sometimes?

Here is an example of 16L SI measurement, a PCB shop did a good controlled impedance board that the characteristic impedance of all the traces meets a target spec value of 85 Ohms. However the insertion loss value of every layer is exceeded -0.48db/in at 4GHz what they expect.

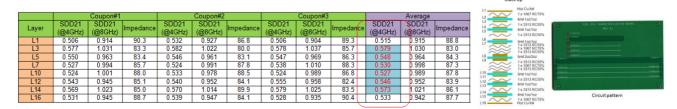


Figure 4 – 16L stackup, circuit pattern and measuring data

Elite Material Co., Ltd did following failure analysis in order to find out what's wrong in the measurement.

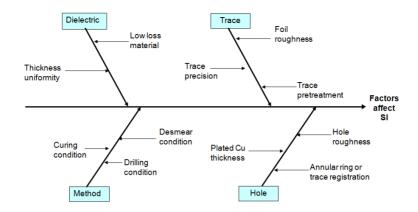


Figure 5 - Fishbone analysis of signal integrity

From Table 2 the physical property result, we can see the material is already fully cured with delta Tg less than 3 degree Celsius.

Itei	ms	Unit	Result
T2	88	min	> 30
	Alpha1	ppm/℃	51.12
CTE	Alpha2	ppm/℃	184.4
	50~260℃	%	2.274
	Tg 1		173.03
· <u>-</u>	Alpha1 Alpha2	ppm/℃ ppm/℃	51.12 184.4 2.274

 $^{\circ}$ C

175.56

2.53

Table 2 - Material Property

Then we did cross-sectioning to check the registration, plated copper thickness and resin integrity of the coupons. However we don't see any obvious variation when referring to figure 6 & 7.

Tg 2

ΔTg

DSC Tg

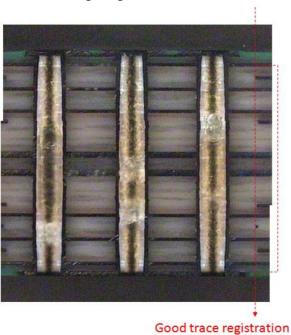


Figure 6 - Layer registration

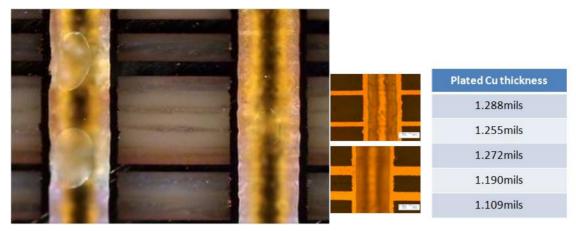


Figure 7 – (left) No resin starvation defect found, (right) plated Cu thickness >0.8mil

We decided to do more cross-sectioning of trace according to below locations;

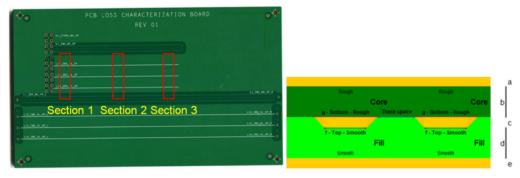


Figure 8 – Cross-sectioning location

It looks the prepreg dielectric (d) thinner than the designed value 3.7mils especially at layer 3, 5, 12 and 14.

L3								
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	
а	mil	1.24	1.3	1.24	1.26	0.05	1.3	
b	mil	3.84	3.78	3.78	3.80	0.05	4.0	
С	mil	1.17	1.16	1.14	1.15	0.03	1.3	
d	mil	2.86	2.70	2.81	2.79	0.16	3.7	
е	mil	1.41	1.35	1.24	1.33	0.18	1.3	
f	mil	3.42	3.4	3.46	3.42	0.06		
g	mil	3.88	3.94	3.9	3.91	0.05	4.1	
h	mil	3.5	3.59	3.58	3.56	0.09		
space	mil	6.7	6.59	6.54	6.61	0.16	6.9	
BO roughness	μm			1.18				
Matte side Roughness	μm		2.77					
Impedance	Ω			85.7			85	

Lo									
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.		
а	mil	1.24	1.41	1.35	1.33	0.16	1.3		
b	mil	3.95	3.78	3.78	3.84	0.16	4.0		
С	mil	1.18	1.15	1.2	1.18	0.05	1.3		
d	mil	2.81	2.70	2.70	2.74	0.11	3.7		
е	mil	1.3	1.35	1.3	1.32	0.08	1.3		
f	mil	3.39	3.39	3.31	3.36	0.08			
g	mil	3.88	3.86	3.89	3.88	0.03	4.1		
h	mil	3.57	3.55	3.55	3.55	0.02			
space	mil	6.7	6.7	6.75	6.72	0.05	7.0		
BO roughness	μm			1.08					
Matte side roughness	μm		2.87						
Impedance	Ω			86.3			85		

L7									
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.		
а	mil	1.3	1.3	1.24	1.28	0.05	1.3		
b	mil	2.86	2.76	2.7	2.77	0.16	3.0		
С	mil	1.14	1.15	1.16	1.15	0.02	1.3		
d	mil	10.1	10	9.73	9.94	0.38	10.0		
е	mil	2.81	2.76	2.59	2.72	0.22	2.6		
f	mil	4.34	4.29	4.35	4.33	0.05			
g	mil	4.95	4.81	4.79	4.85	0.16	4.1		
h	mil	4.60	4.50	4.52	4.54	0.1			
space	mil	7.67	7.83	7.73	7.74	0.16	8.25		
BO roughness	μm			1.18					
Matte side roughness	μm		2.87						
Impedance	Ω			88.3			85		

L10								
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	
а	mil	1.41	1.24	1.35	1.33	0.16	1.3	
b	mil	2.81	2.92	2.7	2.81	0.22	3.0	
С	mil	1.26	1.18	1.13	1.19	0.13	1.3	
d	mil	10.21	10.16	10.1	10.16	0.11	10.0	
е	mil	2.7	2.54	2.76	2.67	0.22	2.6	
f	mil	4.52	4.42	4.32	4.42	0.2		
g	mil	5.17	5.03	4.82	5.01	0.34	4.1	
h	mil	4.84	4.67	4.5	4.67	0.34		
space	mil	7.13	7.19	7.57	7.3	0.43	8.25	
BO roughness	μm			1.08				
Matte side roughness	μm		2.27					
Impedance	Ω		86.8					

L12								L14							
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.
а	mil	1.3	1.3	1.24	1.28	0.05	1.3	а	mil	1.24	1.24	1.3	1.26	0.05	1.3
b	mil	3.67	3.78	3.84	3.76	0.16	4.0	b	mil	3.84	3.89	3.84	3.85	0.06	4.0
С	mil	1.2	1.23	1.18	1.2	0.05	1.3	С	mil	1.2	1.16	1.16	1.17	0.04	1.3
d	mil	2.76	2.70	2.81	2.76	0.11	3.7	d	mil	2.76	2.92	2.70	2.79	0.22	3.7
е	mil	1.41	1.46	1.24	1.37	0.22	1.3	е	mil	1.24	1.35	1.3	1.3	0.11	1.3
f	mil	3.64	3.54	3.53	3.57	0.12		f	mil	3.4	3.49	3.52	3.47	0.12	
g	mil	4.21	4.07	4.09	4.12	0.14	4.1	g	mil	4.06	4.08	4.12	4.08	0.07	4.1
h	mil	3.85	3.68	3.71	3.75	0.17		h	mil	3.6	3.74	3.75	3.7	0.15	
space	mil	6.21	6.27	6.16	6.21	0.11	7.0	space	mil	6.48	6.32	6.7	6.5	0.38	7.0
BO roughness	μm			1.38				BO roughness	μm			1.48			
Matte side roughness	μm	2.37			Matte side roughness	μm	2.47								
Impedance	Ω			82.4			85	Impedance	Ω			83.5			85

Figure 9 – Cross-sectioning result of dielectric thickness, copper trace width, trace space at layer 3, 5, 7, 10, 12 & 14

We also observe glass fiber touch onto the copper trace without sufficient resin coating at those thinner dielectric layers. As a result, the bulk resistivity of the dielectric would be dropped inevitably to cause signal loss increase.

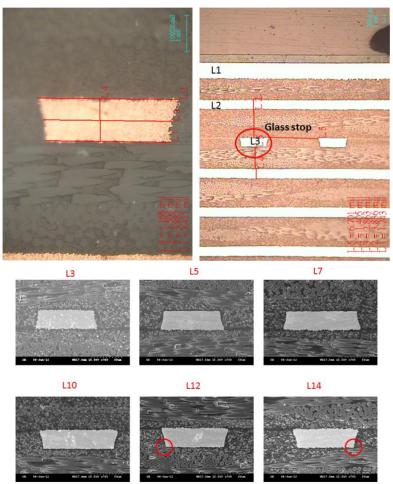


Figure 10 – Glass fiber touch copper trace

What is relationship between characteristic impedance and signal loss?

Someone may think about if we can achieve the nominal controlled impedance, we should have the best signal integrity result. The answer is not true for sometimes, but why?

Here is another example of 16L SI measurement from three different PCB shops. They used the same circuit pattern design and same low loss FR4 material to build the same 16 layers SI test vehicles. We measured them under the same environment condition. Unfortunately we don't see the best result at B shop even she get the best impedance controlled value of 85 Ohms.

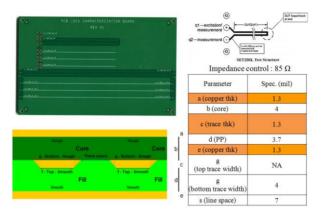


Figure 11 – Circuit pattern design

Table 3 - No guarantee for SI even good impedance control at B shop

Customer	Layer count	Coupon	Layer	SDD21 (@4GHz)	Impedance (Ω)
	16L	parallel	L3	0.461	91.8
	16L	parallel	L5	0.469	92.3
A	16L	parallel	L7	0.477	90.9
_ ^	16L	parallel	L10	0.472	91.2
	16L	parallel	L12	0.471	94.8
	16L	parallel	L14	0.460	94.5
	16L	parallel	L3	0.578	85.7
	16L	parallel	L5	0.547	86.3
В	16L	parallel	L7	0.538	88.3
	16L	parallel	L10	0.524	86.8
	16L	parallel	L12	0.555	82.4
	16L	parallel	L14	0.579	83.5
	16L	parallel	L3	0.490	75.7
	16L	parallel	L5	0.501	75.6
С	16L	parallel	L7	0.502	76.2
	16L	parallel	L10	0.499	76.9
	16L	parallel	L12	0.487	75.8
	16L	parallel	L14	0.478	74.4

Total loss

The signal total loss could be divided into two parts, dielectric loss and conductor loss. The total attenuation could be expressed as below formula

 α (dB)= α (dielectric) + α (conductor) for stripline

How should we overcome the barrier to achieve better signal integrity?

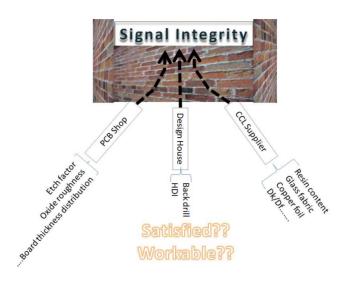


Figure 12 – Signal integrity barrier

Signal loss in transmission line

We select five different materials with their own dielectric constant and dissipation factor as shown below table and we do the insertion loss study by OEMs pattern (Table 5) and PCB stack up (Table 6).

Table 4 - Physical and electric properties of standard/middle/low loss materials

Property	Material A	Material B	Material C	Material D	Material E
Tg	210 (DMA)	170 (DSC)	175 (DSC)	150 (TMA)	175 (DSC)
Water absorption (wt%)	0.05	0.07	0.1	0.08	0.12
Dk (RC 50% @1GHz)	3.9	3.9	4.1	4.3	4.4
Df (RC 50% @1GHz)	0.007	0.009	0.01	0.011	0.018
Resin system	Halogen free low loss VLP	Halogen free low loss RTF	Halogen free middle loss RTF	Halogen free middle loss RTF	Brominated epoxy standard loss RTF

Table 5 - Test coupon pattern

Table 6 - Stackup

SP	P Stack up	S3 Stack up		
1 PP 2 Core	Stack up 1/2 oz 1080X1 1 oz 106X2 RC 70-75%	Layer Stack up 1 1 oz PP 2116*2 RC53 % 2 1 oz Core 10mil (2116*2)		
PP 4 Core 5 PP 6 Core 7 PP	1 oz RTF 106X3 RC 70-75% 1 oz 5mil (2116X1) 1 oz 2116X1 RC 50-75% 1/2 oz 4mil (2116X1) 1/2 oz 2116*2 RC53 % 1/2 oz	3 1 oz PP 7628 RC45 % 28mil core unclad PP 7628 RC45 % 4 1 oz Core 10mil core 5 1 oz PP 2116*2 RC53 % 6 1 oz		
	e/ trace length 3 & 10cm - 3.5mils (measured layer)	50 Ohms stripline/ trace length 16" trace width at L2 ~ 8.8mils		

No matters of SPP or S3 results, PWB base materials always are played a major role for insertion loss performance. The low dissipation factor of material the less loss we can observe in figure 13.

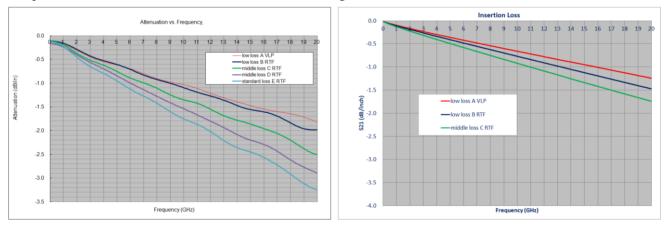


Figure 13 – (left) attenuation result convert by GammaZ from SPP measurement & (right) S21 result measures by VNA from S3 measurement

Copper roughness effect

At high frequency the skin depth shrinks to less than the RMS roughness of conductor, forcing current to traverse every hill and dale on the surface, it means that current will through the longer path than the smooth path and higher resistance that current face it, therefore the Rac with higher roughness will have higher resistance than smooth condition.

There are several types of copper foil in the market and their SEM photo is as shown below table

Table 7 - Copper foil roughness and SEM Photos

Copper type	НТЕ	RTF	VLP	HVLP
Hoz Core Side (matte side)	7.4um	2.9ստ	2.0um	1.0um
Hoz Prepreg Side (shinny side)	1.9um	1.71um	Ra 0.14um	Ra 0.2um
1oz Core Side (matte side)	8.1um	3um	2. 5um	1.7um
loz Prepreg Side (shinny side)	1.9um	∕5,68um	Ratt.16um	Ra 0.2um

Recently, the copper foil manufacturers develop a new type of copper foil HVLP with very low roughness in order to solve the problem of signal loss caused by copper profile.

PCB manufacturing process and signal integrity

Oxide alternative and oxide replacement treatment

There are two main methods to treat the inner layer board for bonding, oxide alternative and oxide replacement; they use different principle and chemical to treat the surface of conductor. Does it cause the signal loss difference for different oxide treatment? We will discuss it in this paper later.

Lamination

The lamination is a key process for PCB manufacture, the material with higher cross link density under cured condition, means that moisture is not easy penetrate into the material and stabilize polymer structure. It is helpful to keep material with low dielectric constant and dissipation factor property.

Back drill and via stub effect

In order to reduce the return path in a transmission line, some PCB manufacturers develop back drill technique to reduce via stub effect. The via stub effect occurred at AC current the signal will travel longer return path than it should go. Back drill could eliminate the inductance on the extra path and should have better loss performance.

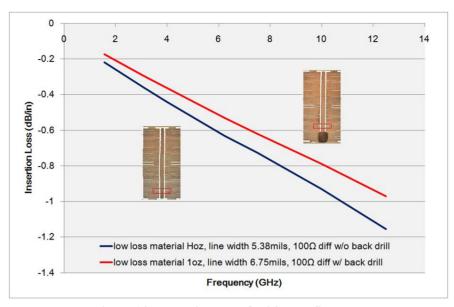


Figure 14 - Insertion loss of a 24 layer SI board

Proximity effect

It will have the proximity effect when pairs of two lines are too close together. We will discuss the line spacing effect for signal integrity under the same stack up, copper foil, and line width condition later.

Experiment Plan

In this experiment we want to find out which factors dominant to signal loss performance by doing SET2DIL measurement. We prepare a 16L SET2DIL stackup each for different set of factors and use low loss A material for the test vehicle.

Figure 15 - Test pattern and stackup design of low loss material A

Factors to be consideration;

- 1. Change +/- 10% of the dielectric thickness
- 2. Change +/- 10% of the trace width
- 3. Change +/- 10% of the trace space
- 4. Change copper foil type/roughness
- 5. Change resin content of stack up
- 6. Change oxide treatment of inner layer (oxide replacement & reduced oxide)

Result and Discussion

1) Change dielectric thickness

Below table show the geometry variation between the control and test specimen;

Sample	item	L3	L5	L7	L10	L12	L14
	core thk	13.39%	12.24%	16.79%	17.73%	12.50%	13.41%
" 100/ dialogenia"	prepreg thk	11.05%	9.17%	11.15%	13.61%	5.73%	5.02%
"+10% dielectric"	trace width	1.68%	2.21%	5.47%	-2.40%	2.98%	4.29%
	trace space	-2.02%	-2.36%	-5.80%	0.91%	0.21%	0.98%
	core thk	-10.13%	-11.11%	-15.47%	-14.49%	-9.26%	-6.71%
" 100/ -1:-1	prepreg thk	-4.70%	-4.28%	-8.85%	-5.64%	-4.51%	-10.44%
"-10% dielectric"	trace width	1.78%	1.34%	2.27%	-4.06%	2.58%	2.91%
	trace space	-2.53%	-0.41%	-3.35%	1.83%	2.08%	-1.78%

The dielectric thickness is an apparent influence factor for SDD21result. When it is increasing about 10%, it could reduce SDD21@4GHZ about 5%.

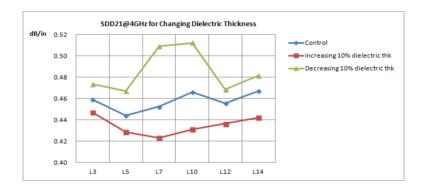


Figure 16 - The relationship between SDD21 and dielectric thickness

The insertion loss suddenly arise at layer 7 & 10 of the coupon with decreasing 10% dielectric thickness which is caused by resin starvation between glass fiber and copper trace shown as figure 17.

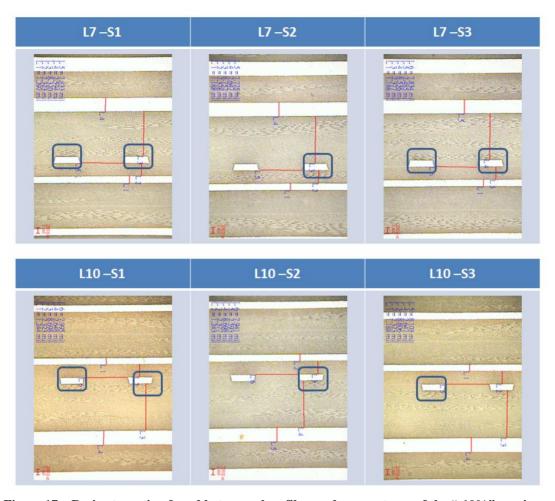


Figure 17 – Resin starvation found between glass fiber and copper trace of the "-10%" specimen

2) Change trace width

Below table show the geometry variation between the control and test specimen;

Sample	item	L3	L5	L7	L10	L12	L14
	core thk	1.14%	-1.13%	0.05%	1.95%	-0.82%	0.66%
" 100/ trace width"	prepreg thk	-0.41%	0.39%	1.53%	3.30%	-0.83%	0.40%
"+10% trace width"	trace width	11.68%	9.80%	8.65%	7.83%	15.48%	19.22%
	trace space	-1.11%	-0.31%	-1.78%	0.23%	-0.11%	-1.58%
	core thk	0.00%	-1.61%	0.01%	0.63%	0.64%	-0.65%
"-10% trace width"	prepreg thk	-5.51%	1.83%	0.58%	2.33%	-0.82%	1.61%
-10% trace width	trace width	-4.69%	-7.58%	-9.88%	-11.22%	-8.89%	-5.37%
	trace space	-5.97%	-4.11%	-4.69%	2.75%	1.77%	-1.58%

The trace width varies within +/-10% doesn't affect the SDD21 performance.

Figure 18 - The relationship between SDD21 and trace width

3) Change trace space

Below table show the geometry variation between the control and test specimen;

Sample	item	L3	L5	L7	L10	L12	L14
	core thk	0.48%	-1.61%	1.95%	2.64%	0.00%	1.15%
"+10% trace space"	prepreg thk	-0.20%	1.21%	-1.35%	1.17%	0.61%	-1.41%
	trace width	1.59%	-8.05%	-0.07%	-0.59%	3.77%	0.33%
	trace space	7.79%	13.96%	6.93%	11.22%	9.03%	10.27%
	core thk	1.46%	-1.61%	0.66%	0.01%	0.64%	0.66%
" 100/ trops smaps"	prepreg thk	-3.27%	2.05%	1.73%	3.69%	2.45%	7.23%
"-10% trace space"	trace width	1.96%	2.11%	0.91%	-1.20%	2.88%	1.18%
	trace space	-13.24%	-11.40%	-13.61%	-10.52%	-9.97%	-8.30%

The trace space within +/-10% doesn't affect the SDD21 performance.

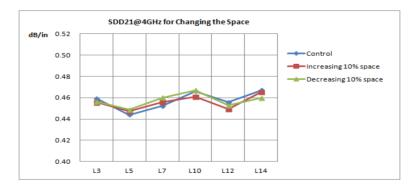


Figure 19 - The relationship between SDD21 and trace space

4) Change copper foil roughness

Below table show the geometry variation between the control and test specimen;

Sample	item	L3	L5	L7	L10	L12	L14
	core thk	1.96%	-0.49%	-2.57%	5.89%	-0.65%	0.66%
"HVLP"	prepreg thk	0.41%	-0.61%	1.73%	-0.39%	6.14%	-0.80%
HVLP	trace width	1.78%	-3.83%	1.38%	-0.52%	-0.31%	3.98%
	trace space	-0.20%	1.74%	-0.67%	-0.45%	0.93%	-0.89%

The copper foil roughness is an apparent influence factor for SDD21result. The lower copper roughness is beneficial for insertion loss. The HVLP copper foil could improve about 5.8% SDD21 compare with VLP copper foil.

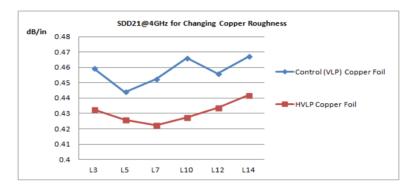


Figure 20 - The relationship between SDD21 and copper foil/roughness

HVLP copper profile is more uniform than VLP which is good for signal integrity.

Copper Foil type	500X	1000X
VLP Copper Foil (Rz : 1.7um)		
HVLP Copper Foil (Rz : 1.2 um)		

5) Change resin content of stack up

Below table show the geometry variation between the control and test specimen;

Sample	item	L3	L5	L7	L10	L12	L14
	core thk	2.94%	-0.32%	0.00%	4.59%	2.43%	1.64%
"low resin content	prepreg thk	6.95%	5.90%	2.50%	2.91%	5.12%	6.22%
50~55%"	trace width	0.99%	-4.02%	1.68%	-1.35%	0.18%	3.12%
	trace space	-3.03%	0.41%	-4.24%	0.92%	0.83%	1.28%
	core thk	-4.91%	-5.64%	-1.92%	4.60%	-4.07%	-3.12%
"high resin content	prepreg thk	-2.66%	-3.47%	0.00%	-0.59%	-2.67%	-1.80%
70~75%"	trace width	-1.17%	0.30%	2.28%	-5.19%	2.98%	-2.47%
	trace space	-1.82%	-0.72%	-5.58%	1.61%	1.45%	4.25%

Changing stack up resin content seems not improve the SDD21 result obviously.

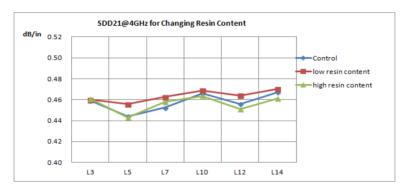


Figure 21 - The relationship between SDD21 and resin content

6) Change oxide treatment

Below table show the geometry variation between the control and test specimen;

Sample	item	L3	L5	L7	L10	L12	L14
	core thk	1.14%	-0.33%	-1.93%	1.30%	-1.14%	1.79%
"DO treatment"	prepreg thk	0.41%	-1.22%	0.77%	1.36%	-1.03%	-1.21%
"BO treatment"	trace width	8.94%	-9.11%	1.75%	1.14%	6.56%	1.60%
	trace space	-5.15%	3.59%	-4.02%	-1.37%	1.55%	1.68%

From the below figure, we could see that black oxide replacement could improve SDD21 slightly compare to oxide alternative treatment about 3%.

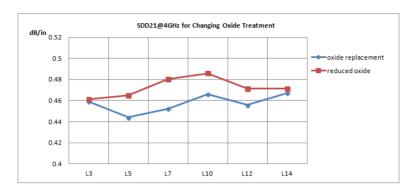


Figure 22 - The relationship between SDD21 and oxide treatment

The trace at layer 14 of the oxide replacement specimen looks high and close to the one of reduced oxide maybe cause by a glass fiber touch to the copper trace in figure 22. It should take more cross-sectioning for confirmation.

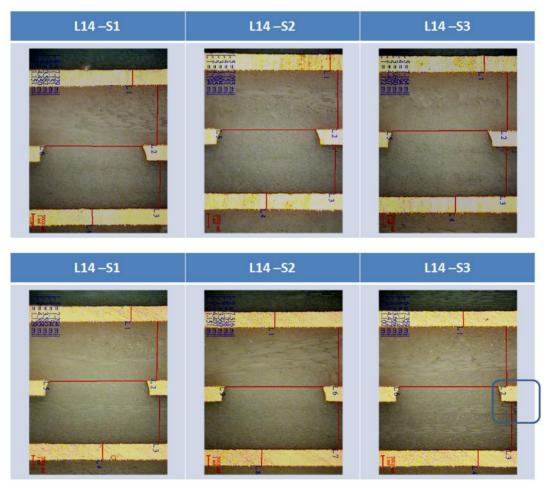


Figure 23 - The cross-section of layer 14 (upper) for reduced oxide specimen and (lower) for oxide replacement specimen which show a glass fiber touch the copper trace

Conclusion

- 1. No guarantee for signal integrity even there is good controlled impedance of the PCB board.
- 2. The lower Dk and Df property is an essential element for achieving better insertion loss performance in the high speed

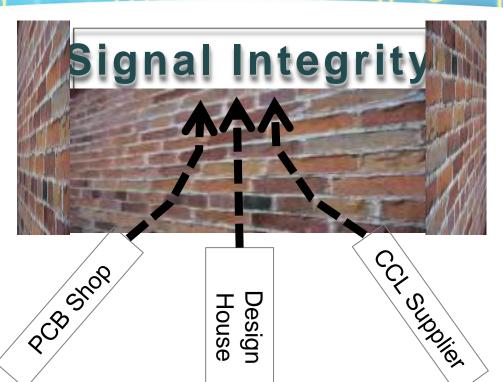
and high frequency. It is necessary to use low loss base material to keep signal integrity especially under higher frequency requirement.

- 3. Considering skin effect of copper, low roughness profile foil should be used in priority for those high speed and high frequency application.
- 4. The back drill technique can eliminate via stub effect to improve signal integrity.
- 5. Regarding with experiment result of SET2DIL measurement,
 - i. The dielectric thickness increase about 10% could reduce SDD21@4GHZ about 5%. This can explain why the multilayer board the insertion loss sometimes is increased even under same stackup and PCB manufacturing if there is insufficient dielectric.
 - ii. The trace width and space within +/-10% doesn't affect the SDD21 performance.
 - iii. The lower copper roughness is beneficial for SDD21performance. The HVLP copper foil (1oz / Rz 1.7um) could improve about 5.8% SDD21 compare to the one using VLP copper foil (1oz/ Rz 2.5um)
 - iv. Changing resin content of stack up with keeping the same thickness (e.g. 2 ply of 106 instead 1 ply of 2116) doesn't affect SDD21 performance obviously.
 - v. From the result it looks oxide replacement could improve SDD21 slightly compare to reduced oxide treatment about 3%. However we need to do further study for confirmation.

Reference

1. Signal Integrity: Simplified by Eric Bogatin

Why Signal always be Loss in a High Speed High Frequency Transmission Line


Albert Chen

Elite Material Co., Ltd.

18 Ta Tung First Rd., Kuan Yin Industrial District, Taoyuan County, Taiwan 32849, ROC

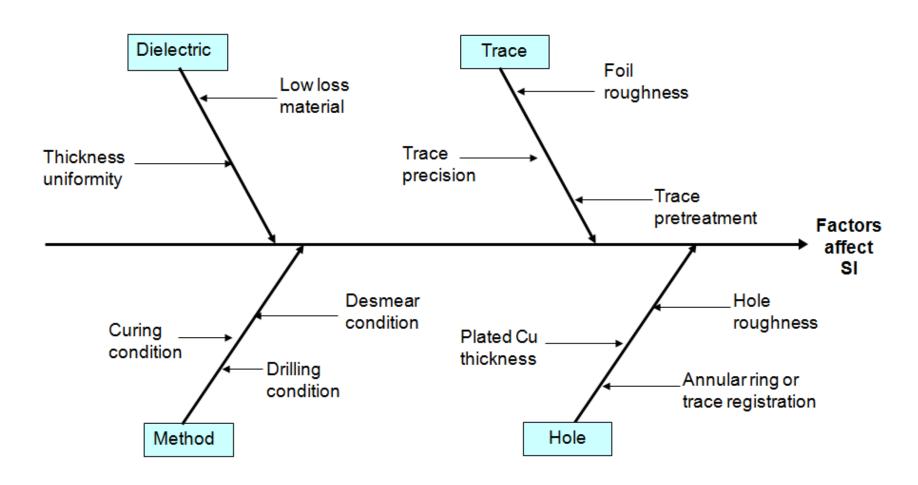
Email: albert_chen@mail.emctw.com

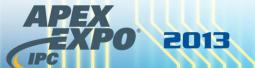
Oxide rough distribution oxide rough distribution

Design House

Back drill HDI

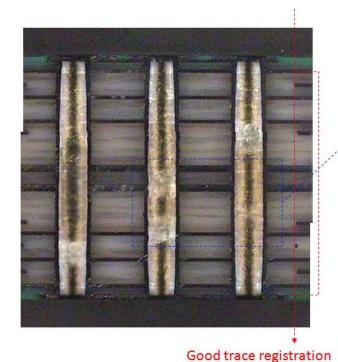
Satisfied?? Workable?? DADE TO THE TE


Why we get poor result of insertion loss sometimes?



		Coupon#1			Coupon#2			Coupon#3			Average	
Layer	SDD21 (@4GHz)	SDD21 (@8GHz)	Impedance									
L1	0.506	0.914	90.3	0.532	0.927	86.8	0.506	0.904	89.3	0.515	0.915	88.8
L3	0.577	1.031	83.3	0.582	1.022	80.0	0.578	1.037	85.7	0.579	1.030	83.0
L5	0.550	0.963	83.4	0.546	0.961	83.1	0.547	0.969	86.3	0.548	0.964	84.3
L7	0.527	0.994	85.7	0.524	0.991	87.8	0.538	1.010	88.3	0.530	0.998	87.3
L10	0.524	1.001	88.0	0.533	0.978	88.5	0.524	0.989	86.8	0.527	0.989	87.8
L12	0.543	0.945	85.1	0.540	0.952	84.1	0.555	0.958	82.4	0.546	0.952	83.9
L14	0.569	1.023	85.0	0.570	1.014	89.9	0.579	1.025	83.5	0.573	1.021	86.1
L16	0.531	0.945	88.7	0.539	0.947	84.1	0.528	0.935	90.4	0.533	0.942	87.7

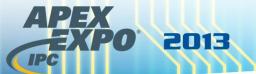
Fishbone Analysis of Signal Integrity



Failure Analysis

Ite	ms	Unit	Result
T2	88	min	> 30
	Alpha1	ppm/℃	51.12
CTE	Alpha2	ppm/℃	184.4
	50~260℃	%	2.274
	Tg 1		173.03
DSC Tg	Tg 2	\mathbb{C}	175.56
	ΔTg		2.53

material is already fully cured


No resin starvation defect

	Plated Cu thickness
表影	1.288mils
	1.255mils
	1.272mils
	1.190mils
10.00	1.109mils

Plated Cu thickness > 0.8 mil

no registration, plated copper thickness and resin integrity problem

Failure Analysis

L3							
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.
а	mil	1.24	1.3	1.24	1.26	0.05	1.3
b	mil	3.84	3.78	3.78	3.80	0.05	4.0
С	mil	1.17	1.16	1.14	1.15	0.03	1.3
d	mil	2.86	2.70	2.81	2.79	0.16	3.7
е	mil	1.41	1.55	1.24	1.55	0.10	1.5
f	mil	3.42	3.4	3.46	3.42	0.06	
g	mil	3.88	3.94	3.9	3.91	0.05	4.1
h	mil	3.5	3.59	3.58	3.56	0.09	
space	mil	6.7	6.59	6.54	6.61	0.16	6.9
BO roughness	μm			1.18			
Matte side Roughness	μm			2.77			
Impedance	Ω			85.7			85

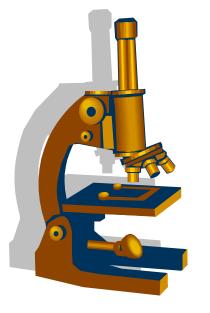
L5							
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.
а	mil	1.24	1.41	1.35	1.33	0.16	1.3
b	mil	3.95	3.78	3.78	3.84	0.16	4.0
С	mil	1.18	1.15	1.2	1.18	0.05	1.3
d	mil	2.81	2.70	2.70	2.74	0.11	3.7
е	mil	1.0	1.05	1.0	1.02	0.00	1.0
f	mil	3.39	3.39	3.31	3.36	0.08	
g	mil	3.88	3.86	3.89	3.88	0.03	4.1
h	mil	3.57	3.55	3.55	3.55	0.02	
space	mil	6.7	6.7	6.75	6.72	0.05	7.0
BO roughness	μm			1.08			
Matte side roughness	μm			2.87			
Impedance	Ω			86.3			85

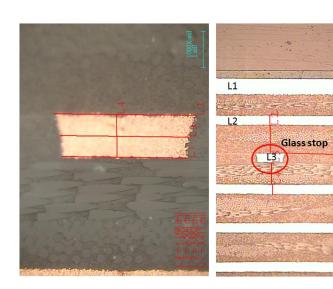
	9.0 11,0140,017	
	in the second se	
	0 0 1 30 1 2	
	Section 1 Section 2 Section 3	
110,281,51	Section 1 Section 2 Section 3	
112,785,3K		
114,289,35	0,1	

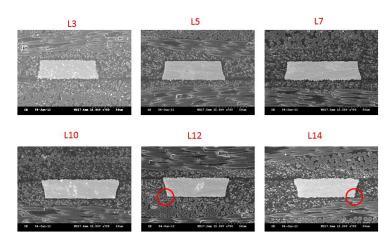
L7								
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	
а	mil	1.3	1.3	1.24	1.28	0.05	1.3	
b	mil	2.86	2.76	2.7	2.77	0.16	3.0	
С	mil	1.14	1.15	1.16	1.15	0.02	1.3	
d	mil	10.1	10	9.73	9.94	0.38	10.0	
е	mil	2.81	2.76	2.59	2.72	0.22	2.6	
f	mil	4.34	4.29	4.35	4.33	0.05		
g	mil	4.95	4.81	4.79	4.85	0.16	4.1	
h	mil	4.60	4.50	4.52	4.54	0.1		
space	mil	7.67	7.83	7.73	7.74	0.16	8.25	
BO roughness	μm			1.18				
Matte side roughness	μm		2.87					
Impedance	Ω			88.3			85	

L10								
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	
а	mil	1.41	1.24	1.35	1.33	0.16	1.3	
b	mil	2.81	2.92	2.7	2.81	0.22	3.0	
С	mil	1.26	1.18	1.13	1.19	0.13	1.3	
d	mil	10.21	10.16	10.1	10.16	0.11	10.0	
е	mil	2.7	2.54	2.76	2.67	0.22	2.6	
f	mil	4.52	4.42	4.32	4.42	0.2		
g	mil	5.17	5.03	4.82	5.01	0.34	4.1	
h	mil	4.84	4.67	4.5	4.67	0.34		
space	mil	7.13	7.19	7.57	7.3	0.43	8.25	
BO roughness	μm			1.08				
Matte side roughness	μm		2.27					
Impedance	Ω		86.8					

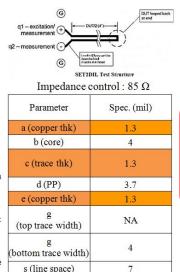
	Rough		Rough
е	Core	ore	C
	g - Bottom - Rough	Trace space	g - Bottom - Rough
	f - Top - Smooth		f - Top - Smooth
ı	Fill	Fill	F
	Smooth		Smooth


L12								
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	
а	mil	1.3	1.3	1.24	1.28	0.05	1.3	
b	mil	3.67	3.78	3.84	3.76	0.16	4.0	
С	mil	1.2	1.23	1.18	1.2	0.05	1.3	
d	mil	2.76	2.70	2.81	2.76	0.11	3.7	
е	mil	+.++	1.40	1.24	1.07	0.22	1.8	
f	mil	3.64	3.54	3.53	3.57	0.12		
g	mil	4.21	4.07	4.09	4.12	0.14	4.1	
h	mil	3.85	3.68	3.71	3.75	0.17		
space	mil	6.21	6.27	6.16	6.21	0.11	7.0	
BO roughness	μm		1.38					
Matte side roughness	μm		2.37					
Impedance	Ω			82.4			85	

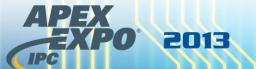

L14								
Parameter	units	Section 1	Section 2	Section 3	Avg.	Range	Spec.	
а	mil	1.24	1.24	1.3	1.26	0.05	1.3	
b	mil	3.84	3.89	3.84	3.85	0.06	4.0	
С	mil	1.2	1.16	1.16	1.17	0.04	1.3	
d	mil	2.76	2.92	2.70	2.79	0.22	3.7	
е	mil	1.24	1.33	1.3	1.3	0.11	1.3	
f	mil	3.4	3.49	3.52	3.47	0.12		
g	mil	4.06	4.08	4.12	4.08	0.07	4.1	
h	mil	3.6	3.74	3.75	3.7	0.15		
space	mil	6.48	6.32	6.7	6.5	0.38	7.0	
BO roughness	μm			1.48				
Matte side roughness	μm		2.47					
Impedance	Ω			83.5			85	


It looks the prepreg dielectric (d) thinner than the designed value 3.7mils especially at layer 3, 5, 12 and 14

Failure Analysis


Glass fiber touch onto the copper trace

No guarantee for SI even good impedance control!!



Customer	Layer count	Coupon	Layer	SDD21 (@4GHz)	Impedance (Ω)
	16L	parallel	L3	0.461	91.8
	16L	parallel	L5	0.469	92.3
Α	16L	parallel	L7	0.477	90.9
^	16L	parallel	L10	0.472	91.2
	16L	parallel	L12	0.471	94.8
	16L	parallel	L14	0.460	94.5
	16L	parallel	L3	0.578	85.7
	16L	parallel	L5	0.547	86.3
В	16L	parallel	L7	0.538	88.3
ь	16L	parallel	L10	0.524	86.8
	16L	parallel	L12	0.555	82.4
	16L	parallel	L14	0.579	83.5
	16L	parallel	L3	0.490	75.7
	16L	parallel	L5	0.501	75.6
С	16L	parallel	L7	0.502	76.2
	16L	parallel	L10	0.499	76.9
	16L	parallel	L12	0.487	75.8
	16L	parallel	L14	0.478	74.4

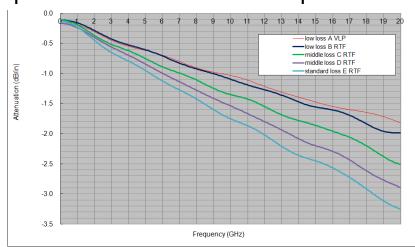
Signal Loss in Transmission Line

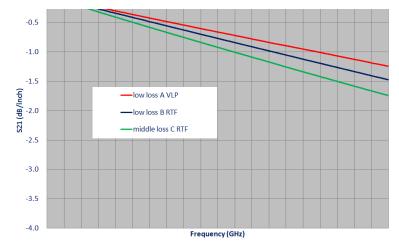
 α (dB)= α (dielectric) + α (conductor)

 α (dielectric)

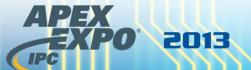
Resin content
Glass fabric
Board thickness distribution
Dk/Df......

a(conductor)

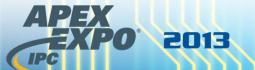

Copper foil
Oxide roughness
Etch factor
Back drill......

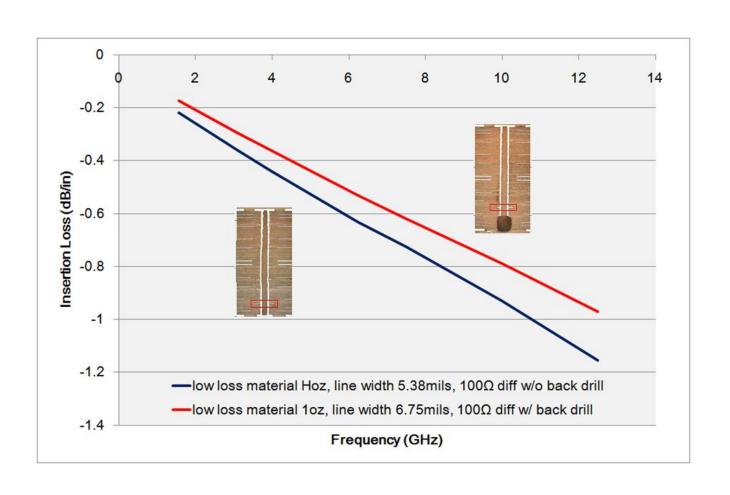

PWB Base Material

Property	Material A	Material B	Material C	Material D	Material E
Tg	210 (DMA)	170 (DSC)	175 (DSC)	150 (TMA)	175 (DSC)
Water absorption (wt%)	0.05	0.07	0.1	0.08	0.12
Dk (RC 50% @1GHz)	3.9	3.9	4.1	4.3	4.4
Df (RC 50% @1GHz)	0.007	0.009	0.01	0.011	0.018
Resin system	Halogen free low loss VLP	Halogen free low loss RTF	Halogen free middle loss RTF	Halogen free middle loss RTF	Brominated epoxy standard loss RTF


PWB base materials always are played a major role for insertion loss performance. The low dissipation factor of material the less loss we can observe

Attenuation result convert by GammaZ from SPP measurement


S21 result measures by VNA from S3 measurement


Copper Roughness


Foil	Hī	HTE		RTF		_P	HVLP	
Type	Towards Core side	Towards Prepreg side	Towards Core side	Towards Prepreg side	Towards Core side	Towards Prepreg side	Towards Core side	Towards Prepreg side
Hoz	7.4um	1.9um	2.9um	1.71üm at to it first it its	2.0um s (1-70-1) sort to (1-71-1) the	Ra 0.14um 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.0um 1 11-10-11 11 11-11-11 11-11-11	Ra 0.2um
1oz	8.1um	1.9um	3um	5.68um	2.5um	Ra 0.16um	1.7um	Ra 0.2úm

Small roughness and uniform profile is good for signal integrity

Back Drill

Experiment Plan

Factors to be consideration;

- 1. Change +/- 10% of the dielectric thickness
- 2. Change +/- 10% of the trace width
- 3. Change +/- 10% of the trace space
- 4. Change copper foil type/roughness
- 5. Change resin content of stack up

Layer	Stack up
1	1/2 oz
PP	1080 RC 63%
2	1 oz
Core	4.5mil 2116 RC 50%
3	1 oz
PP	106X2 RC 75%
4	1 oz
Core	4.5mil 2116 RC 50%
5	1 oz
PP	106X2 RC 75%
6	1 oz
Core	3mil 1/1 1080X1 RC 63%
7	1 oz
PP	1080X2 RC 63%+2116 RC 55%
8	2 oz
Core	5mil 2116X1
9	2 oz
PP	1080X2 RC 63%+2116 RC 55%
10	1 oz
Core	3mil 1080X1
11	1 oz
PP	106X2 RC 75%
12	1 oz
Core	4.5mil 2116 RC 50%
13	1 oz
PP	106X2 RC 75%
14	1 oz
Core	4.5mil 2116 RC 50%
15	1 oz
PP	1080X2 RC 63%
16	Hoz

6. Change oxide treatment of inner layer (oxide replacement & reduced oxide)

Geometry variation between the control and test specimen

Change +/- 10% of the dielectric thickness

Sample	item	L3	L5	L7	L10	L12	L14
"+10% dielectric"	core thk	13.39%	12.24%	16.79%	17.73%	12.50%	13.41%
	prepreg thk	11.05%	9.17%	11.15%	13.61%	5.73%	5.02%
	trace width	1.68%	2.21%	5.47%	-2.40%	2.98%	4.29%
	trace space	-2.02%	-2.36%	-5.80%	0.91%	0.21%	0.98%
	core thk	-10.13%	-11.11%	-15.47%	-14.49%	-9.26%	-6.71%
"-10% dielectric"	prepreg thk	-4.70%	-4.28%	-8.85%	-5.64%	-4.51%	-10.44%
"-10% dielectric"	trace width	1.78%	1.34%	2.27%	-4.06%	2.58%	2.91%
	trace space	-2.53%	-0.41%	-3.35%	1.83%	2.08%	-1.78%

Change +/- 10% of the trace width

Sample	item	L3	L5	L7	L10	L12	L14
"+10% trace width"	core thk	1.14%	-1.13%	0.05%	1.95%	-0.82%	0.66%
	prepreg thk	-0.41%	0.39%	1.53%	3.30%	-0.83%	0.40%
	trace width	11.68%	9.80%	8.65%	7.83%	15.48%	19.22%
	trace space	-1.11%	-0.31%	-1.78%	0.23%	-0.11%	-1.58%
	core thk	0.00%	-1.61%	0.01%	0.63%	0.64%	-0.65%
"-10% trace width"	prepreg thk	-5.51%	1.83%	0.58%	2.33%	-0.82%	1.61%
-10% trace width	trace width	-4.69%	-7.58%	-9.88%	-11.22%	-8.89%	-5.37%
	trace space	-5.97%	-4.11%	-4.69%	2.75%	1.77%	-1.58%

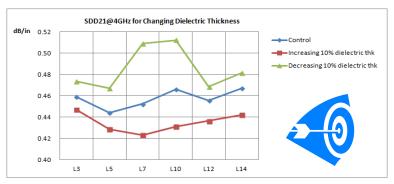
Change +/- 10% of the trace space

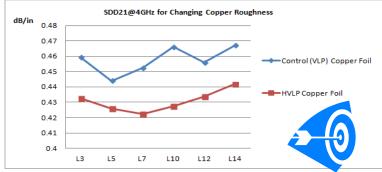
Sample	item	L3	L5	L 7	L10	L12	L14
"+10% trace space"	core thk	0.48%	-1.61%	1.95%	2.64%	0.00%	1.15%
	prepreg thk	-0.20%	1.21%	-1.35%	1.17%	0.61%	-1.41%
	trace width	1.59%	-8.05%	-0.07%	-0.59%	3.77%	0.33%
	trace space	7.79%	13.96%	6.93%	11.22%	9.03%	10.27%
	core thk	1.46%	-1.61%	0.66%	0.01%	0.64%	0.66%
"-10% trace space"	prepreg thk	-3.27%	2.05%	1.73%	3.69%	2.45%	7.23%
"-10% trace space"	trace width	1.96%	2.11%	0.91%	-1.20%	2.88%	1.18%
	trace space	-13.24%	-11.40%	-13.61%	-10.52%	-9.97%	-8.30%

Change copper foil type/roughness

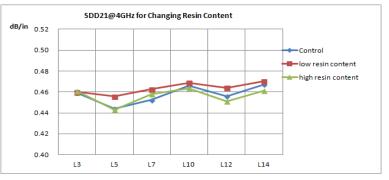
Sample	item	L3	L5	L7	L10	L12	L14
"HVLP"	core thk	1.96%	-0.49%	-2.57%	5.89%	-0.65%	0.66%
	prepreg thk	0.41%	-0.61%	1.73%	-0.39%	6.14%	-0.80%
	trace width	1.78%	-3.83%	1.38%	-0.52%	-0.31%	3.98%
	trace space	-0.20%	1.74%	-0.67%	-0.45%	0.93%	-0.89%

Change resin content of stack up

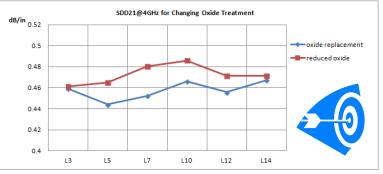

Sample	item	L3	L5	L7	L10	L12	L14
"low resin content 50~55%"	core thk	2.94%	-0.32%	0.00%	4.59%	2.43%	1.64%
	prepreg thk	6.95%	5.90%	2.50%	2.91%	5.12%	6.22%
	trace width	0.99%	-4.02%	1.68%	-1.35%	0.18%	3.12%
	trace space	-3.03%	0.41%	-4.24%	0.92%	0.83%	1.28%
"high resin content 70~75%"	core thk	-4.91%	-5.64%	-1.92%	4.60%	-4.07%	-3.12%
	prepreg thk	-2.66%	-3.47%	0.00%	-0.59%	-2.67%	-1.80%
	trace width	-1.17%	0.30%	2.28%	-5.19%	2.98%	-2.47%
	trace space	-1.82%	-0.72%	-5.58%	1.61%	1.45%	4.25%

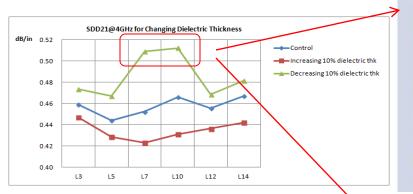

Change oxide treatment of inner layer

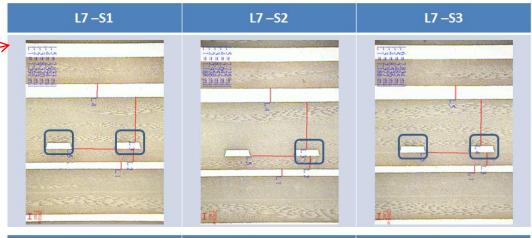
Sample	item	L3	L5	L 7	L10	L12	L14
"BO treatment"	core thk	1.14%	-0.33%	-1.93%	1.30%	-1.14%	1.79%
	prepreg thk	0.41%	-1.22%	0.77%	1.36%	-1.03%	-1.21%
	trace width	8.94%	-9.11%	1.75%	1.14%	6.56%	1.60%
	trace space	-5.15%	3.59%	-4.02%	-1.37%	1.55%	1.68%



Test Result

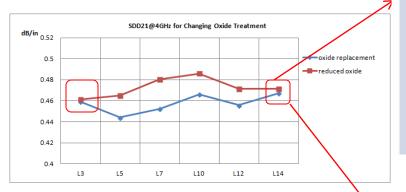


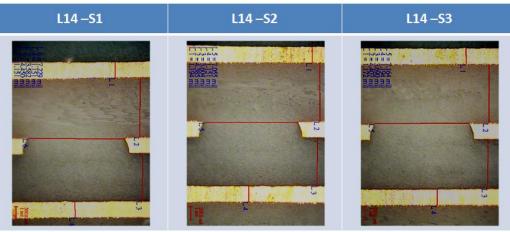




Observation

Change +10% of the dielectric thickness


Resin starvation found between glass fiber and copper trace

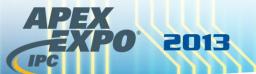


Observation

reduced oxide specimen

oxide replacement specimen which show a glass fiber touch the copper trace found at L14. It should take more cross-sectioning for confirmation, especially at L3

oxide replacement specimen


Conclusion

- No guarantee for signal integrity even there is good controlled impedance of the PCB board.
- The lower Dk and Df property is an essential element for achieving better insertion loss performance in the high speed and high frequency. It is necessary to use low loss base material to keep signal integrity especially under higher frequency requirement.
- Considering skin effect of copper, low roughness profile foil should be used in priority for those high speed and high frequency application.
- The back drill technique can eliminate via stub effect to improve signal integrity.

Conclusion

- Regarding with experiment result of SET2DIL measurement,
 - 1.The dielectric thickness increase about 10% could reduce SDD21@4GHZ about 5%. This can explain why the multilayer board the insertion loss sometimes is increased even under same stackup and PCB manufacturing if there is insufficient dielectric.
 - 2. The trace width and space within +/-10% doesn't affect the SDD21 performance.
 - 3. The lower copper roughness is beneficial for SDD21performance. The HVLP copper foil (1oz / Rz 1.7um) could improve about 5.8% SDD21 compare to the one using VLP copper foil (1oz/ Rz 2.5um)
 - 4. Changing resin content of stack up with keeping the same thickness (e.g. 2 ply of 106 instead 1 ply of 2116) doesn't affect SDD21 performance obviously.
 - 5. From the result it looks oxide replacement could improve SDD21 slightly compare to reduced oxide treatment about 3%. However we need to do further study for confirmation.

