Warpage Optimization of Printed Circuit Boards with Embedded Active and Passive Components

2013

Dr. Seunghyun Cho Assistant Professor, Dept. of Mechanical Eng. Dongyang Mirae Univ. coolsch@dongyang.ac.kr

Ryan Park Norbert Galster Dr. Juergen Kress Atotech Deutschland GmbH Basle, Switzerland

ryan.park@atotech.com norbert.galster@atotech.com juergen.kress@atotech.com Outline

Introduction to chip embedding package and material

Research results

- Background and scope
- R & D activities for simulation
- Warpage simulation
- Conclusion
- Appendix
 - Feasibility test of new material
 - Roadmap of new material

Chip embedding package

Chip with wires

Flip chip with bumps

Chip with vias

[1]

- Driving forces
 - Cost
 - Electrical performance
 - Thermal / Mechanical reliability
- Packaging density

Requirements for embedding materials

Processing

- Convenient handling

2013

- Void free
- No damage of dies
- Low warpage after pressing/laminating
- Good leveling characteristics with different thicknesses of components
- Suitable for fine pattern
- Easy to mount SMD on a board
- High yield

Material Properties

- High Tg, low CTE, high stiffness, low shrinkage
- Dimensional stability, no cracks after TCT
- Good adhesion on different surfaces (organic/inorganic/metal)
- Melting flow for good wetting and embedding

Example for power application

INFORMATION that INSPIRES INNOVATION

2013

Reference : High density integration by embedding chips for reduced size modules and electronic systems , HEREMES 2010, Infineon, AT&S

Structure of new embedding material

- 1st Layer : Glass reinforcement
- CTE control, stiffness
- Leveling, defined layer thickness above dies
- 2nd Layer : Excess resin layer for encapsulation of components
- Limit of thickness of chip: Depending on the design, up to 400 um
- No voids and no contact of glass fibre to chips
- No reliability failures caused by glass fiber protrusion

Comparison of embedding process

Current process

2013

Reduction

- Number of materials
- Process steps
- Cost

🔵 No!

- Cavity formation
- Voids due to solvent free manufacturing process of material
- Damage of chips
- Problem caused by glass fabric like a protrusion or chipping in the cavity

- Handling
- Mounting SMD on the substrate

New simulation approach for warpage

* Hypothesis

2013

The result of simulation is closer to reality if material properties during curing cycle are considered in addition to cured one.

Simulation approach for warpage

Activities for simulation

- Definition of test layout Done
- Definition of key resin properties of interest ^{Done}
- Measurement of key resin properties over entire curing cycle Done
- Simulation of warpage during lamination and curing of resin Done
- Comparison of the simulated warpage with real physical samples using the same resins Open
- Finally simulation of warpage and reliability under conditions of reliability testing Open

Warpage mechanism during curing(1/4)

Cure-Thermal-Mechanically coupled analysis

2013

Cure-thermal coupled analysis can be expressed as:

$$C(T)\dot{T} + K(T)T = Q + Q^I + Q^F + Q^C$$

- C(T): The temperature dependent specific heat
- K(T): The temperature dependent thermal conductivity
- T: The nodal temperature vector
- \dot{T} : The time derivative of the temperature vector
- $Q: The \ external \ heat \ flux \ vector$
- Q^{I} : The heat flux vector due to plastic work
- Q^F : The heat generated due to friction
- Q^{C} : The heat generated due to curing

Warpage mechanism during curing(2/4)

Cure kinetics

2013

 In a curing analysis, the cure rate is calculated for each time step. Assuming that the cure rate is defined as the function of the degree of cure and temperature of :

$$\frac{d\alpha}{dt} = f(\alpha, T)$$

 The time integration of the degree of cure is done using backward Euler method:

$$\alpha_n^{\ i} = \Delta t \cdot f(\alpha_n^{\ i-1}, T) + \alpha_{n-1}$$

i: iteration number for curef: function defined by cure kinetics modeln: current increment number $\Delta t:$ time step size of the incrementn-1: previous increment number

Warpage mechanism during curing(3/4)

Cure Shrinkage Strain

2013

✓ The cure shrinkage strain is calculated according to the volumetric shrinkage due to curing process.

 \checkmark The resin degree of cure shrinkage is defined as :

$$\alpha_{S} = \frac{V_{r}^{S}}{V_{r}^{S_{\infty}}} \qquad \begin{array}{l} \alpha_{S} : \text{The resin degree of cure shrinkage} \\ V_{r}^{S} : \text{The volumetric cure shrinkage} \\ V_{r}^{S_{\infty}} : \text{The maximum volumetric cure shrinkage} \end{array}$$

The resin degree of cure shrinkage calculates the cure shrinkage strain :

$$\varepsilon_r^{\ S} = (1 - V_r^{\ S})(1 - V_r^{\ S})^{\frac{1}{3}} - 1$$

APEX EXPO 2013

INFORMATION that INSPIRES INNOVATION

Warpage mechanism during lamination process

Step	warpage	Stress
1 ^{st.} step	 Displacement to the xy-plane is happened by shrinkage of PPG Displacement to the thickness direction is restraint by pressing force even though PPG shrinkage happened. 	 Stress is occurred by PPG shrinkage and deformation restrain of substrate to the thickness direction
2 ^{nd.} step	 Displacement to the x-direction and y-direction increases after end of 2^{nd.} step Displacement to the z-direction little changes. Warpage is affected by PPG shrinkage and deformation restrain of substrate to the thickness direction 	 Stress increased after end of 2^{nd.} step by PPG shrinkage and deformation restrain of substrate to the thickness direction
3 ^{rd.} Step (Warpage to Z-direction)	 Displacement to the x-direction and y-direction decreases after end of 3^{rd.} step by much deformation to the thickness direction. Displacement to the z-direction greatly increases because of unrestraint boundary condition. 	 Stress is a little released by large deformation to the thickness direction. Stress is not perfectly disappeared because PPG material was fully cured during the 1^{st.} and 2^{nd.} lamination process before stress released

Simulation approach for warpage(1/2)

Simulation approach for warpage(2/2)

Curing profile

2013

1st. Analysis during heating period

Results of 1st analysis were used as intitial condition for 2nd analysis

2^{nd.} Analysis during dwelling period

Results of 2nd analysis were used as intitial condition for 3rd analysis

3^{rd.} Analysis during cooling period

Simulation cases

• 9 simulation cases for the material combination

2013

Reinforced layer			30µm	
Embedding resin layer	Chip		60µm	
Core layer of CCL			40µm	

ATION that INSPIRES INNOVATION

No.	Reinforced layer	Embedding resin layer	Material
1		High modulus, Low CTE	А
2	A(Reinforced) High modulus, Low CTE	Reinforced) Middle modulus, Middle CTE	
3		Low modulus, High CTE	С
4		High modulus, Low CTE	Α
5	B(Reinforced) Middle modulus, Middle CTE	CTE Middle modulus, Middle CTE	
6		Low modulus, High CTE	С
7		High modulus, Low CTE	Α
8	C(Reinforced) Low modulus, High CTE	Middle modulus, Middle CTE	В
9		Low modulus, High CTE	С

Resin key parameters

Item	Comment
Storage modulus [GPa]	Measured on cured sample by DMA
CTE (z-direction) [ppm/K]	Measured on cured sample by TMA
Heat conductivity [W/mK]	Measured on cured sample
Storage modulus [GPa]	Determined with rheometer over the entire curing cycle
CTE [ppm/K]	Determined from the volume change using PVT method over the entire curing cycle
Density [g/cm³]	Determined on uncured material

Resin only layer

3

20

2013

•

Properties of the embedding materials

Isotropic characteristics

Properties of the embedding materials

Anisotropic characteristics

2013

The modulus to ydirection of a reinforced layers were input as the modulus to z-direction. Because it is very difficult to obtain the modulus to z-direction by measuring method. Also, the modulus to zdirection is not major parameter to warpage rather than that to x,y direction.

Finite element modeling

1/4 modeling for symmetric goemetry

2013

FORMATION that INSPIRES INNOVATION

Warpage simulation results

INFORMATION that INSPIRES INNOVATION

Warpage after curing

Warpage analysis

Combination for the maximum warpageComReinforced: Resin C / Embedding: Resin AReinforced:

- Warpage pattern was smile because CTE of the 1st layer and 2nd layer were larger than that CTE of core
- Minimum warpage predicted with the lowest CTE of 1st layer and the highest CTE of 2nd layer
- ① and ② were interfered each other. These restraint warpage.

- Warpage pattern was smile because CTE of the 1st layer and 2nd layer were larger than CTE of core
- Maximum warpage predicted with the highest CTE of 1st layer and the lowest CTE of 2nd layer
- ③ and ④ contributed to make warpage to same smile direction. These amplified warpage.

Conclusion

Importance of the properties during curing

2013

- Curing analysis has to be carried in a PCB level to improve understanding warpage mechanism. Specially it is very important in a laminating process due to cure shrinkage of PPG as a function of degree of cure.

- Therefore, it is strongly demanded that curing properties should be measured in material maker.

Embedding material combination

- Large deformation at the embedding resin layer is more effective to reduce warpage of the embedded package.

very much for your attention.

Appendix

- Thickness distribution of new material
- Void free of new material
- Embedding performance for thick components
- Current capability of new material
- Roadmap of new material

Thickness distribution of new material

Test vehicle

2013

- 190 mm x 100 mm
- Number of dies (Cu dummy) : 50 x 28
- Die thickness (Cu dummy) : 100 μm
- Dielectric distance on dies : ca. 35 μm

Dielectric thickness on dies

Thickness distribution of new material

Comparison with prepregs

2013

NATION that INSPIRES INNOVATION

Void free of new material

INFORMATION that INSPIRES INNOVATION

Embedding performance for thick components

Dies of 200 µm thickness in Lab. trial

Current capability of new material

Structure of embedding material

Subtractive	(A)MSAF)	SAP	
Cu foil 18 to 140 µm in thickness	Ultrathin and low p foil with carrier	rofile Cu	Under development	
Dielectric Th	nickness [µm]	Under development		
1 st layer	25 to 80	Over 80 µ	m in sampling stage	
2 nd layer	10 to 150	Up to 400 µ	m in sampling stage	

Roadmap of new material

			2012	2013	2014	2015	2016
	Tg [°C]	by DMA	220	> 230	> 250	> 250	> 250
Embedding material	СТЕ	w/o G/F	35	< 30	25	17	17
	[ppm/K]	w G/F	14	< 12	< 11	< 10	< 10
	Patterning Capability		Sub. MSAP	Sub. (M)SAP Buried P	Sub. (M)SAP Buried P	Sub. (M)SAP Buried P	Sub. (M)SAP Buried P
and the second se	Dk	w/o G/F	-	-	< 3.0	< 3.0	< 3.0
	Df	at 5 GHz	-	-	0.010	0.010	0.010
	Thickness	1 st Layer	25 ~ 80	25 ~ 80	25 ~ 100	25 ~ 110	25 ~ 120
	[µm]	2 nd Layer	20 ~ 180	20 ~ 180	20 ~ 200	20 ~ 300	20 ~ 350

Dry coating

2013

Glass fabric, B-stage

✓ 2nd L : Embedding
 ✓ 1st L : Reinforced
 ✓ Cu foil

