Lead-free Nanosolders and Nanowire Joining for Microelectronics/Nanoelectronics Assembly and Packaging

Fan Gao,¹ Zhiyong Gu,¹ Sammy Shina²

1. Department of Chemical Engineering

2. Department of Mechanical Engineering University of Massachusetts Lowell

> Feb 20th, 2013 IPC APEX EXPO 2013, San Diego, CA

Outline

Introduction

- Joining methods and applications
- Nanosoldering in electronics

2013

Nanosolder Fabrication

Nanosolder Joint Formation

- Surface oxidation, flux effect and solder melting on substrates
- One-dimensional diffusion in segmented nanowire
- Nanowire assembly and nanosolder joint formation

Conclusion & Future Work

Acknowledgement

Nanosoldering in Nanotechnology

H. Jiang et al., Chem. Mater. 2007, 19, 4482 4485

Introduction

Nanojoining methods

Electron beam (E-beam) / Focused ion beam (FIB)

Z. Gu et al., Langmuir 2007, 23, 979-982

Y. Lu et al., Nature Nanotechnology 5, 218 - 224 (2010)

Introduction

2-dimensional interconnect /nanoparticle solder --close to the conventional soldering technique

1-dimensional interconnect /nanowire bridge

F. Gao et al, Proceedings of the 2011 Nanotechnology Conference, 2011, 2, 422-425

Introduction

2013

✓ Nanosolder fabrication

Surface oxidation, flux effect and solder melting on substrates

One-dimensional diffusion in segmented nanowire

Nanowire assembly and nanosolder joint formation

Nanowire Fabrication

•

Nanowires

DSC—Melting point of pure tin nano-solder nanowire D=50nm, L=5µm

F. Gao, S. Mukherjee, Q. Cui, Z. Gu, J. of Phys. Chem. C 2009, 113 (22)

Introduction

2013

Nanosolder fabrication

✓ Surface oxidation, flux effect and solder melting on substrates

One-dimensional diffusion in segmented nanowire

Nanowire assembly and nanosolder joint formation

Nanosolder Reflow and Setup

that INSPIRES INNOVATION

Solder Nanowire Oxidation

2013

	D	Oxide
Micro	1 µm	0.01%
Nano	30 nm	11.11%

FORMATION that INSPIRES INNOVATION

3-4 nm Oxide layer

F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, Z. Gu. Applied Surface Science 2012, 258, 7507-7514.

Flux Effect of Solder Reflow

2013

Rosin based flux mainly formula:

ION that INSPIRES INNOVATION

 $C_{19}H_{29}COOH$

RCOOH + MX = RCOOM +HX

M= Sn, etc X = oxide, hydroxide or carbonate

- Remove oxidation layer
- Enhance wettability

Micron-solder + semi-liquid flux Nano-solder + flux vapor

Flux Vapor Vs. Liquid Flux

- Quantity
- Cleaning residue

Sn nanowire solder

Sn/Ag nanowire solder

F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, Z. Gu. Applied Surface Science 2012, 258, 7507-7514.

Flux + Temperature Effect

NATION that INSPIRES INNOVATION

2013

F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, Z. Gu. Applied Surface Science 2012, 258, 7507-7514.

Flux Effect of Solder Nanowries

Flux Type		рН	Property
Rosin- based	R (Rosin)	3.02 ± 0.32	Low activity
	RMA (Rosin Mild Activated)	2.74±0.38	Mildly activity
	RA (Rosin Activated)	2.43±0.29	High activity
Inorganic		0.29 ± 0.05	High activity, high corrosion

Flux Effect of Solder Nanowries

F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, Z. Gu. Applied Surface Science 2012, 258, 7507-7514.

Substrate Effect of Solder Reflow

Solder Nanowire Reflow on Reactive Substrate

ATION that INSPIRES INNOVATION

Sn-Pt two-segment solder nanowires

Pure Sn solder nanowires

Introduction

2013

Nanosolder fabrication

Surface oxidation, flux effect and nanosolder melting on substrates

One-dimensional diffusion in segmented nanowire

Nanowire assembly and nanosolder joint formation

Intermetallic Diffusion and Nanowire

2013

How much IMC in nanosolders?

Thermal Interdiffusion on Nanosolder

2013

F. Gao et al, Proceedings of the 2011 Nanotechnology Conference, 2011, 2, 422-425

Interface Diffusion

2013

F. Gao, Z. Liu, G. Zhou, J. C. Yang, Z. Gu, Science of Advanced Materials 2012, 4, 881-887

E-beam Irradiation Induced Fast Diffusion

Cu-rich segment

2013

Sn-rich segment

E-beam Irradiation

that INSPIRES INNOVATION

500 nm

Sn-rich Segment

Point	Element Weight %		
	Cu	Sn	
1	37.79	62.21	
2	19.46	80.54	
3	51.02	48.98	

F. Gao, Z. Liu, G. Zhou, J. C. Yang, Z. Gu, Science of Advanced Materials 2012, 4, 881-887

E-beam Irradiation Induced Fast Diffusion

2013

F. Gao, Z. Liu, G. Zhou, J. C. Yang, Z. Gu, Science of Advanced Materials 2012, 4, 881-887

Introduction

2013

Nanosolder fabrication

Nanosolder surface oxidation and flux effect

One-dimensional diffusion in segmented nanowire

✓ Nanowire assembly and nanosolder joint formation

Solder Joint Formation

--Nanosolder reflow in vapor phase

Solder-Ni-Au-Ni-Solder

2013

F. Gao, Z. Gu. Nanotechnology 21 (2010) 115604 (7pp)

2um

Solder Joint Formation

--Nanowire assembly and Nanosolder joint formation in liquid phase

2013

Magnetic nanowire segment + External magnetic field

F. Gao, Z. Gu. Nanotechnology 21 (2010) 115604 (7pp)

Solder Joint Formation

Electrical Property

2013

Left: optical microscope images of assembled ordered nanowires

Right: electrical measurement by probestation

F. Gao, Z. Gu. Nanotechnology 21 (2010) 115604 (7pp)

Conclusion

N that INSPIRES INNOVATION

- Nanosolder on multi-segment nanowires have been successfully fabricated by electrodeposition method;
- Flux assisted environment enhanced reflow result and micron scale solder spheroids formed on non-wetting Si substrate;
- Nanosolder reflow performance on reactive Cu substrate was studied;
- ✓ 1-D interdiffusion on Cu-Sn two-segment nanowire were observed through the thermal heating and e-beam irradiation;
- ✓ Nanojoints formed between nanowires and a network was constructed through quasi-reflow process in liquid.

Future Work

Material

- Diffusion kinetics modeling of confined nanowire in one-dimension;
- □ Nanosolder size effect for melting temperature depression;
- Different solder materials for various applications.

Processing and Applications

- □ Joint formation between nanowires for device packaging;
- □ Joint reliability study;
- Real device testing, e.g., nano-wire bonding.

Acknowledgement

Collaborators

2013

- Dr. Zhenyu Liu, Prof. Judith C. Yang, University of Pittsburgh
- Dr. Guangwen Zhou, State University of New York (SUNY)
- Pamela Eliason, Dr. Gregory Morose, Toxics Use Reduction Institute (TURI)
- Robert Farrell, Benchmark Electronics

Funding support

- NSF Grant, Zhiyong Gu and Sammy Shina, "Collaborative Research: Investigation of Fundamental Properties of Lead-free Nanosolders for Nanoscale"
- Toxics Use Reduction Institute (TURI)
- 3M Non-tenured Faculty Grant
- Center of High-rate Nanomanufacturing (CHN) Seed Fund

Chemicals and materials in-kind support

- Edward Briggs, Indium Corp.
- Don Longworth, DDi Corp.

Group members

Dr. Qingzhou Cui, Dr. Xiaopeng Li, Molly Clay, Yang Shu, Weihan Chin, Karuna Rajathurai, Erica Chin, Subhadeep Mukherjee, Yingying Sha, and many undergraduate students.

Thank you!

New England Lead Free Consortium Members 2000-2012

Raytheon

EMC² where information lives'

Benchmark Electronics

CAD

REEDOM

Services

🐺 Texas Instruments

Interested in Joining proposed Nano Solder Development Consortium in 2014? Contact Professor Sammy Shina 978 934 2590 Sammy_Shina@uml.edu