Halogen Free Solder Paste

2013

A Truly Zero Halogen Approach

Gavin J. Jackson, Ian J. Wilding Henkel Ltd, Hemel Hempstead, United Kingdom Gavin.jackson@henkel.com Ian.wilding@henkel.com

Mark Currie Henkel Electronic Materials LLC, Irvine, CA Mark.currie@henkel.com

Contents

• What is a halogen?

- Impact on the environment
- Halides and halogens
- Halides in electronics
- Halogens in electronics
- Definition of halogen free
- Technical challenges to remove halogen
- Current 'State of the Art'
- Summary and conclusions

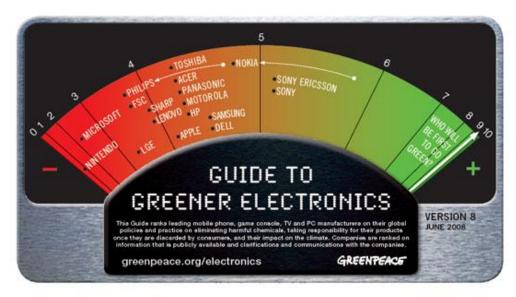
What is a halogen?

- The elements occurring in Group 17 of the periodic table (fluorine, chlorine, bromine, iodine & astatine)
- Widely used in all manners of industrial and consumer applications
 - Toothpaste
 - Disinfectants
 - Lighting

- Film photography
- Drug manufacturing
- Food production
- Etc.....

ns	5																Λ	
hydrogen 1 H 1.0079]			1		c	151	c		25			65.	548	65.	50		12 10026
lithium 3	beryllium 4											[boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	С	Ν	0	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.190 argon
11	12												13	14	15	16	17	18
Na 22.990	Mg 24,305												AI 26.982	Si 28.096	P 30.974	S 32.065	CI 35.453	Ar 39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.966 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.90 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thalllum	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
Cs	Ba	57-70 ×	Lu	⁷² Hf	Ta	74 W	Re	76 Os	Ir	78 Pt	⁷⁹ Au	80 4	81 TI	82 Pb	Bi	⁸⁴ Po	At	Rn
132.91	Da 137,33	^	LU 174.97	178.49	180.95	183,84	186.21	190.23	192.22	196.08	196.97	Hg 200.59	204,38	207.2	206.98	12091	12101	12221
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]	l,			
																	V	
*Lanthanide series		lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70			
Lant	nanide	series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			138.91 actinium	140.12 thorium	140.91 protactinium	144.24 uranium	[145] neptunium	150.36 plutonium	151.96 americium	157.25 curium	158.93 berkelium	162.50 californium	164.93 einsteinium	167.26 fermium	168.93 mendelevium	173.04 nobelium		
**Actinide series			89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

Impact on the Environment

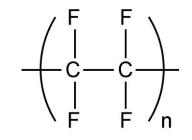

- CFC's and ozone layer depletion
- Certain brominated flame retardants (RoHS directive)
- Persistence in the environment
- Potential to form dioxins

2013

• The complete removal of halogens is currently not legislation driven

Impact on the Environment

- Halogens do not cause harmful effects to humans in the forms used in electronics manufacturing
- The concern is the unregulated disposal of waste electronics and electrical equipment via incineration
- This can potentially release harmful (to human health and the environment) by-products



Halides and Halogens

Halides

- Ionically (weakly) bonded 'salts'
- Negatively charged halide neutralised by a positively charged cation
- Generally hydroscopic and under certain conditions electrically conductive
- E.g. NaCl (table salt)

- Halogens
- Covalently (strongly) bonded halogen in an organic molecule
- No ionic charge when bonded into the molecule
- Structure will determine the ease of evolution of the halide
- E.g. Teflon

Halides in Electronics (Solder)

		Halide Fr	ee	Halogen Free					
Drivers for High reliability interconnects Classification International standards				REACH Non-government organisations (NGOs)					
Definition		-	ritic growth detection ve ROL0 classification	No intentional halogens added to flux Comply to international standards (see below)					
Test Procedures	Chloride	Well-establi and Bromide hali titration	de test measured by	New – O ₂ bomb on flux Ion chromatography on flux					
	IPC J- STD-004B	Fluoride Test	None detectable	JPCA-ES-01-1999 Bromine 900ppm max					
International Standards	IPC-TM-	Chlorides		IEC 61249-2-21 Chlorine 900ppm max					
	650	and Bromides	<0.005%	Total halogen IPC-401B 1500ppm					

Halogens in Electronics (Bis-A Resins)

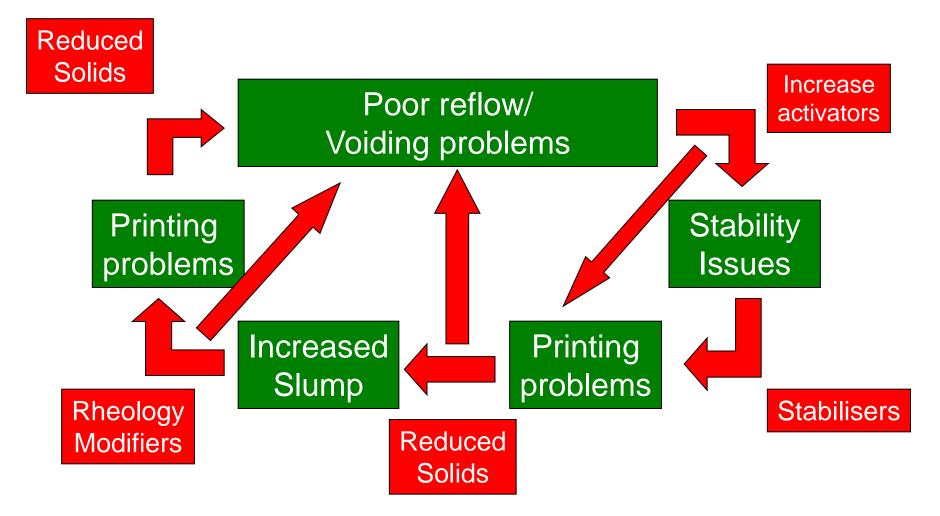
- The main use of halogens in the electronics industry is flame retardants in laminate manufacturing
 - Polybrominated biphenyls and polybrominated diphenyl ether have been largely covered by the RoHS directive
 - Careful disposal of electronics (limiting impact of TBBPA) has also been covered by the WEEE directive in Europe
- Halogens are added to fluxes (cored solder wire, liquid fluxes, solder pastes) to improve solder performance

APEX EXPO 2013

Halogens in Electronics

- Greenpeace initially pushed the effort
- Consumer (handheld) producers have lead the way

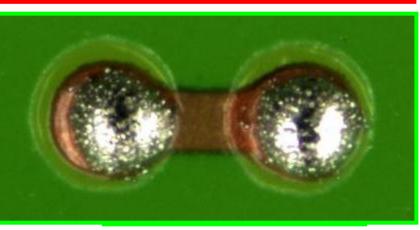
 Automotive now following with demand for Halogen free solder paste


Definition of Halogen Free

- Current definitions (JPCA, IEC, IPC) are all very similar
 - <900ppm Chlorine</p>

- <900ppm Bromine</p>
- <1500ppm combined (total) halogens
- The term halogen free does not necessarily mean zero halogen
 - Is it technically possible to go zero halogen?

Technical Challenges

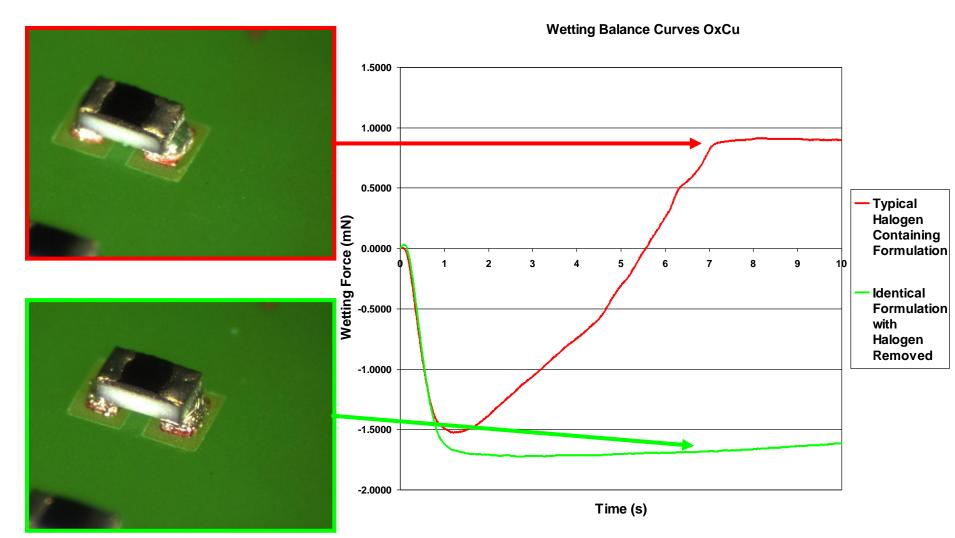

Technical Challenges Reflow

 The removal of halogen from a flux formulation is not simple

2013

- Halogens are exceptionally efficient at removal of oxide from solder surfaces
- Fluxes have to be formulated from first principles

Typical halogen containing formulation

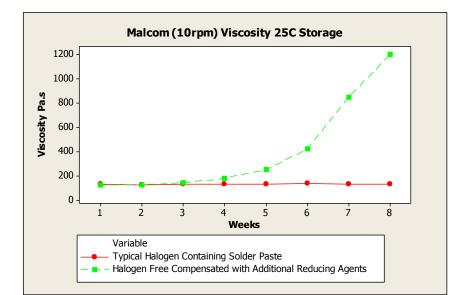

that INSPIRES INNOVATION

Identical formulation with halogen removed

Technical Challenges Wetting

NATION that INSPIRES INNOVATION

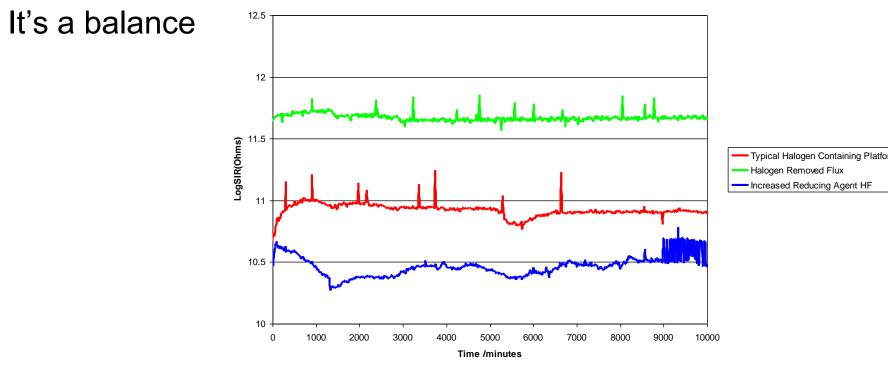
• Wetting properties of the fluxes are also affected by the removal of halogens


Technical Challenges Stability

 Compensating for the removal of halogen requires the addition of other materials that have reducing properties with regards to metal oxides

2013

 This can also in some cases have a detrimental affect on stability of the product

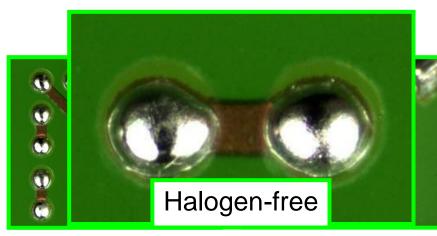


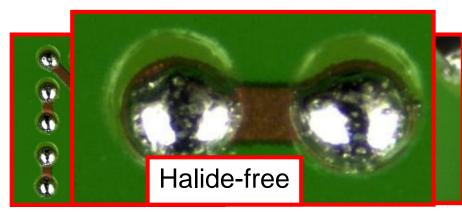
Technical Challenges Reliability

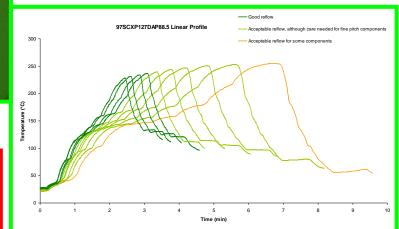
 Increasing the non-halogen reducing agents can also compromise reliability

2013

The removal of halogen typically improves electrical reliability
Comparative HF SIR results

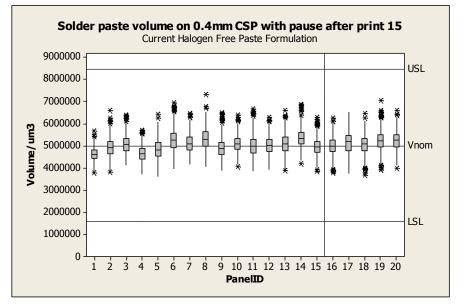

Current 'State of the Art'

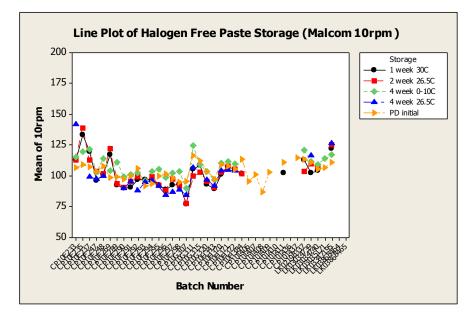

- Extensive resource has been dedicated to the development of completely halogen free solder paste formulations
- Production of electronics assemblies is now possible with consumables containing no intentionally added halogens



Current 'State of the Art'

Reflow Performance

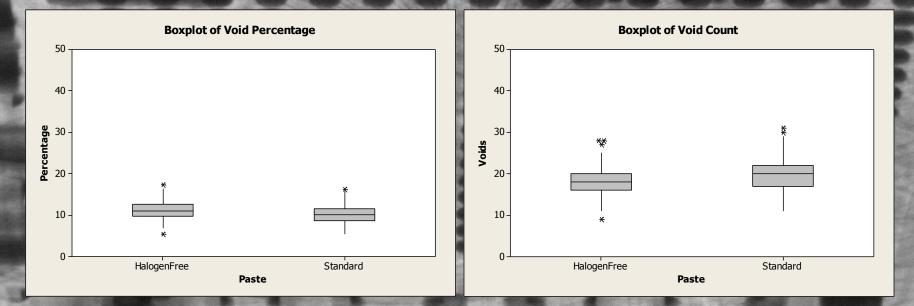




Current 'State of the Art'

Printing and Stability

2013


ION that INSPIRES INNOVATION

Current 'State of the Art'

Voiding

2013

Summary

- HF solder paste offers the following:
- Reduced environmental impact
- Attractive end-user perception
- Zero Halogen reduces risk

2013

 Zero added Halogen Solder Pastes are now a technical possibility

Thank you for Listening

Any Questions?