

Low Temperature SMT Process Implementation

Drivers for Low Temperature Soldering

- I. Lower Cost Components
- II. Lower Cost Laminates

- **III.** Lower Energy Consumption
- IV. Eliminate Wave Soldering
- V. Reduced Thermal Stress During Assembly Process

Low Temperature Conversion

Lower Cost Component Example

- Molex Shrouded Header (105°C)
 Catalogue Price \$.84
- Molex Shrouded Hea
 Catalogue Price \$1.23
- 46% Savings

2013

Source: Online component catalogs (like RS, DigiKey, Farnell)

Low Temperature Molding Compound Cost

MAJOR EMC PRODUCT ASP

		Integrated Circuits					
Package Categories	Discretes	Through Hole	Standard SMT Packages	Thin SMT Packages	Array and QFN Packages		
Base Epoxy Resins	 ECN/ OCN Hybrid DCPD, Biphenyl, Multi-Aromatic 	• ECN/OCN	 ECN/OCN, DCPD Hybrid Biphenyl, Multi-Aromatic 	• Biphenyl, Multi-Aromatic	 Biphenyl, Multi-Aromatic 		
Price Range: ASP (\$/kg):	\$3 – \$12/kg \$4.6/kg	\$4 – \$6/kg \$5.5/kg	\$5 – \$15/kg \$9.5/kg	\$10 – \$18/kg \$14.7/kg	\$12 – \$20/kg \$16.6/kg		

Epoxy Cresole Novolac

Ortho-Cresole Novolac

Dicyclopentadiene

Component Warpage Concerns

FBGA – Fine Pitch Ball Grid Array

Low Temperature Conversion

PCB Cheap ⇒ Cheaper

ON that INSPIRES INNOVATION

Remote Control Manufacturer case study – potentially save >\$108,000 / year through the use of low temperature processing .

VIU

2013

Since this was a feasibility <u>study of PCB materials only</u>, the potential savings are estimated below PCB cost difference was estimated at 10% between materials based on various PCB suppliers.

	FR-1	XPC	Potential Savings	Value Savings
PCB cost / panel	US\$ 6.00	US\$ 5.40	US\$ 0.60 / panel	
Ave Production / week	20,000	20,000	US\$ 2,000	US\$ 2,000
Ave Production / annum	1,080,000	1,080,000	US\$ 108,000	US\$ 108,000 / annum

FR-4 to Phenolic Paper Laminate Conversion yields even greater savings if possible to implement

Higher T_g = Higher Cost Laminates

FR-1 vs XPC – Stiffness Under Heat

Warpage Example

2013

FR-1, 1.2mm Thick, 245° C Peak

XPC, 1.2mm Thick, 245°C Peak

XPC, 1.2mm Thick, 240°C Peak

Low Temperature Conversion

INSPIRES IN

2013

Best opportunity with only few Through-Hole components cases

Wave Soldering Elimination

• Savings In:

- Factory Footprint Wave, Touch Up, Inspection
- Equipment W/S, Soldering Stations
- Working Capital 800kg alloy @ \$40/kg
- Manpower Operator, Tech, Engr, Touch Up
- Maintenance Labor, Spares, Tools,
 Supplies, Pallets, Dross Management
- **Processes** One less thermal excursion
- Materials Flux and Bar Solder

Eliminating Wave with PITH

Conventional

2013

Over Print

Paste-In-Hole (PIH)

PITH+ (w Preform)

Printing Parameters- "Drop In"

2013

Stencil Printing

Printing Mode	SINGLE / 50.0	0 mm/s	From	t->Rear
Separation 3.	00mm/ 3.00mm/s	Clea	arance	0.00mm
Cleaning Cycle	Auto 14 /	25	Manual	0 / 0
Solder Cycle	139 / 200			1.11
	D RUN Iting		MAIN	GENCY STO AIR POWER

Front Squeegee	Rear Squeegee	DPEN
7.1 kgf	7.1 kgf	I I Mithade
setting 7.0 kgf	setting 7.0 kgf	
Front Offset	Rear Offset	in the second
x 1100020	x 0.020	1CYCLE ST
Y -0.020	Y 111-0.020	STOP
e / / 0.000	θ	11-21-21-21-21-21-21-21-21-21-21-21-21-2
Cotton Length(use	d total) CLEAR	
Cotton roll coun	t 71,13/11 M	
Alcohol Pressing	time Offset	MARKEN

	Present	Previous		
Print Gap (mm)	0 0			
Print Speed (mm/s)	45 60			
Print Pressure (x 0.1MPa)	1.8 Semi Auto			
Separation Distance (mm)	3 2			
Separation Delay (s)	0.1 0			
Separation Speed (mm/s)	1	Max		
Printer Model	Hitachi NP-04M	Stencil	Laser Cut, 5	mils (127 µm)
Relative Humidity (%)	55%	Tempera	ture (°C)	23°C
Squeegee Material & Width	Stainless Steel, 1	0" (254mm)	Underwipe S	Solvent -NA-

Paste-In-Hole (PITH) & PITH+ - How Its Done

Paste-In-Hole

Paste-In-Hole + Preform

DIP Socket

RJ45 Connector

RJxx Connector

PIH+ Worked Example

2013

U105 PIH Calcula Lead count = 12	ition				SM :76 mil
Cu pad area	Rectangle	4550.00			Pad:70 mi
	Outer circle	3846.50		+	
	Hole size	1589.63			
	Annular ring	2256.88			FHS:45 mil
	Final area	4883.63			
PTH volume	Top fillet volume	22437.92	\$ 53083.33		
	PTH volume	230495.63			
	Total joint volume	306016.88		\rightarrow / +	
Solder paste vol	Aperture area	4883.63			
	Stencil thickness	5.00			
	Total paste volume	24418.13			
Preform volume	Joint volume req'd	306016.88			
	Paste volume cont'n	12209.06			
	Component lead volume	71140.63			
	Solder vol shortfall	222667.19	0.00022267	Conversion to in ³	1" cube mil cube
	Nearest preform sizes	<u>0805 x 2 pcs</u>			0.00000001
			Preform Vol	Preform Dimensions	
Preforms needed	T&R 0805	24 per	0.000113	79x51x28 mils	

PITH+ Stencil Aperture Design

U105 PIH Stencil Aperture Design Lead count = 12

2013

Rectangl Outer cirr Hole size Annular r Final are
Rectangl Notch Pad circle Notch Final Are

gle	4550.00
ircle	3846.50
ze	1589.63
r ring	2256.88
rea	4883.63
gle	4550.00
	506.25
cle	1923.25
	506.25
rea	5460.75

Extra paste helps initiate lead wetting

Common PITH Defects - Hole Fill, Chicken Drumstick!

Low Temperature Conversion

Parameters At A Glance

Printing

2013

- Can be drop-in
- Stencil design changes minimal with PITH & PITH+ preform

Placement

- Standard SMT
- Preforms placed as if passives (0402, 0201...)
- Reflow Soldering
 - Peak 170-190° C
 - If soak required, 110-120° C

Typical Reflow Profile

Low Temperature Conversion

Commonly Used Alloys

NATION that INSPIRES INNOVATION

Shiny, Strong Fillets

2013

QFN

Bluetooth Module

Connector

SOT

Button Cell Battery Holder

Void Performance? Soak Profile Helpful

2013

QFN Thermal Pad - Bare

QFN Thermal Pad - Actual

QFN Terminations - Bare

Chip Resistor & Cap - Bare

QFN Terminations - Actual

Conclusion – Low Temp Alloy Use

- Substantial cost savings over regular processes
 - Materials
 - Energy
 - Eliminate Wave/Selective Soldering
- Printing is normally a Drop In
- Major process for high volume consumer electronics for 5 years

Thank You!

Agenda - Low Temperature Conversion

- 1) Introduction & Agenda
- 2) Value Created

- 3) Converting Components
- 4) Laminate Conversion
- 5) Processes Involved in Conversion
- 6) Hands-On Exercise Rework
- 7) Specifically Reflow Parameters
- 8) Alloy Data Strength & Voids

Low Temperature – Alpha Value Propositions

Halogen Free / Zero Halogen	Reduced cost of entry barrier
Wave Solder Replacement	Process simplification, cost savings
2 nd Side Reflow	Product improvement
Manual Soldering Elimination	Quality consistency improvement, reliability & repeatability
PCB Material Cost Reduction	Improved materials' thermal compatibility

Areas of Value Creation

1) Cost Savings

- I. Components
- II. PCB
- III. Electricity (Heat)
- IV. Wave Solder Replacement
- 2) Process Gains
 - I. Less Thermally Induced Issues

Major Savings Here

Low Temperature Conversion

Exceptions

Connector Price By Temperature

486

- Molex Shrouded Header (105°C)
 USD 0.84
- Molex Shrouded H – USD 1.23

2013

46% More Expens

Some components just cannot be converted & needs manual soldering

Source: Online component catalogs (like RS, DigiKey, Farnell)

Component Warpage Concerns

Low Temperature Conversion

PCB Cheap ⇒ Cheaper

Philips Home Control case study – potentially save >US\$108,000 / annum through the use of low temperature processing (CVP-520)!

<u>VIU</u>

2013

Since this was a feasibility <u>study of PCB materials only</u>, the potential savings are estimated below PCB cost difference was estimated at 10% between materials based on various PCB suppliers.

	FR-1	XPC	Potential Savings	Value Savings
PCB cost / panel	US\$ 6.00	US\$ 5.40	US\$ 0.60 / panel	
Ave Production / week	20,000	20,000	US\$ 2,000	US\$ 2,000
Ave Production / annum	1,080,000	1,080,000	US\$ 108,000	US\$ 108,000 / annum

Data extracted from technical report TW110511 by TW Mok on the feasibility of using even cheaper PCB laminates

The comparison above is not even between FR-4 & XPC

PCB Warpage Concerns

2013

Halogen Free PCBs Stiff Enough Are \$\$\$

FR-1 vs XPC – Stiffness Under Heat

GRADE :- RL FRI ANSI/NEMA TYPE FRI

PCB Tg Revisited – Cost & Material Impact

Warpage? Really?

2013

FR-1, 1.2mm Thick, 245° C Peak

XPC, 1.2mm Thick, 245°C Peak

XPC, 1.2mm Thick, 240°C Peak

Low Temperature Conversion

Stencil Printing – Multiple Applications

Conventional

Over Print

Paste-In-Hole (PIH)

PIH+ (w Exactalloy)

Printing Parameters

2013

Stencil Printing

Printing Mode	SINGLE / 50.00	mm/s	From	t->Rear
Separation 3.	.00mm/ 3.00mm/s	Clea	arance	0.00mm
Cleaning Cycle	Auto 14 /	25	Manual	0/0
Solder Cycle	139 / 200			
ΔΗΤΟ				
	D RUN		MAIN	GENCY STOP AIR POWER

	Present	Previous	
Print Gap (mm)	0	0	
Print Speed (mm/s)	45	60	
Print Pressure (x 0.1MPa)	1.8	Semi Auto	
Separation Distance (mm)	3	2	
Separation Delay (s)	0.1	0	
Separation Speed (mm/s)	1	Max	
Printer Model	Hitachi NP-04M	Stencil	Laser Cut, 5 mils (127 µm)
Relative Humidity (%)	55%	Tempera	ture (°C) 23°C
Squeegee Material & Width	Stainless Steel, 1	0" (254mm)	Underwipe Solvent -NA-

Paste-In-Hole (PIH) & PIH+ - How Its Done

Paste-In-Hole

Beware - Aperture Damage!

Paste-In-Hole + Preform

DIP Socket

RJ45 Connector

RJxx Connector

Overprinting vs PIH+ - Flux Residue

PIH+ Worked Example

U105 PIH Calcula Lead count = 12	tion						M :76 mil
Cu pad area	Rectangle	4550.00				- F	Pad:70 mi
	Outer circle	3846.50			+		
	Hole size	1589.63					•
	Annular ring	2256.88					FHS::45 mil
	Final area	4883.63					
PTH volume	Top fillet volume	22437.92	\$ 53083.33	/			
	PTH volume	230495.63	00000.00				
	Total joint volume	306016.88					
Solder paste vol	Aperture area	4883.63				L	
	Stencil thickness	5.00					
	Total paste volume	24418.13					
Preform volume	Joint volume req'd	306016.88					
	Paste volume cont'n	12209.06					
	Component lead volume	71140.63					
	Solder vol shortfall	222667.19	0.00022267	Conv	ersion to in ³	1" cube	mil cube
	Nearest preform sizes	<u>0805 x 2 pcs</u>					0.00000001
			Preform Vol		Preform Dimensions		
Preforms needed	T&R 0805	24 per	0.000113		79x51x28 mils		

PIH+ Stencil Aperture Design

U105 PIH Stencil Aperture Design Lead count = 12

Cu pad area	Rectangle Outer circle Hole size Annular ring Final area
Stencil Aperture	Rectangle Notch Pad circle Notch Final Area

4550.00
3846.50
1589.63
2256.88
4883.63
4550.00
506.25
1923.25
506.25
5460.75

Extra paste helps initiate lead wetting

Common PIH Defects - Hole Fill, Chicken Drumstick!

Wave Solder Replacement

Best opportunity with only few Through-Hole components cases

W/S Replacement – Alpha Value Proposition

• Savings In:

- Space Footprint Of M/c, T/u, Inspection
- Machines W/S, Soldering Stations
- Manpower Operator, Tech, Engr
- Maintenance Labor, Spares, Tools, Supplies
- Processes W/S, T/u, Inspection
- Materials Direct & Indirect

Manual Soldering Elimination

hat INSPIRES INNOVATION

Soldering Tip Temperature – 400° C Best

2013

344° C Tip Temp

Pin 1 Clean Break!

400° C Tip

Brute Push Test

No Evidence Of Wetting! **PTH Clean Break!** There is no BiSnAg wire, only SACX wire

Reworked Joint Strength

ON that INSPIRES INNOVATION

Taken from 3 shear readings each

Low Temperature Conversion

Parameters At A Glance

Printing

2013

- Can be drop-in
- Very minimal changes even with PIH & PIH+

Placement

- Standard SMT None
- PIH & PIH+ As required to accommodate

Reflow Soldering

- Major temperature drop

Rework / Touch-up

– 400° C Solder Iron tip temperature

Low Temperature Conversion

Knowing Solder

Shiny, Strong Fillets

2013

QFN

BlueTooth Module

Connector

Button Cell Battery Holder

SOIC

57.6Bi42Sn0.4Ag vs SAC-305

Taken from 7 shear readings each

Void Performance?

2013

QFN Thermal Pad - Bare

QFN Thermal Pad - Actual

QFN Terminations - Bare

Chip Resistor & Cap - Bare

QFN Terminations - Actual

Conclusion – Low Temp Conversion

- Substantial cost savings over regular processes
- Savings can outweigh paste cost differences
- Can be mechanically stronger if done right
- Involves more than just changing pastes
- Beware of excessive flux residue
- Pick on plastic components / flex circuits
- Avoid high peak temperature

Thank You!