
S26-2-1

FPGA on Board

Rick Stroot
Mentor Graphics
The Netherlands

Abstract
Whilst the number of new ASIC designs has decreased over the last couple of years, there has been a dramatic increase in the
number of FPGA designs implemented. Not only have the number of designs increased rapidly, the complexity and also the
size of these devices have grown over this period. In the early 1980s, the first PLD devices had around 300 gates, while
today’s FPGAs exceed two million gates. Along with the increasing FPGA gate count there has been a corresponding
increase in the number of available I/O pins such that there are over 2000 pins available on the largest BGA packaged FPGA
today. As FPGAs continue to grow larger and more complex, it seems that the design tools used by the design engineers
become increasingly unsophisticated. Which begs the question: How are designers going to place these large components on
to a PCB in an automated and consistent way?

Since the problem spans the two processes of FPGA and PCB design, it is difficult to decide where a solution should be
created. Central to this discussion are the problems of symbol creation and I/O assignment, and given the fact that it concerns
the two processes, how to keep the information consistent between them. This paper discusses the problems and possible
solutions to integrate today’s large FPGAs on a PCB, where subjects like scalability to larger/smaller devices, corporate
library structures and the origin of the I/O constraints will be discussed. This paper also addresses some ways to help
overcome these FPGA integration problems by using the right tools.

Introduction
With the Non Recurring Engineering (NRE) costs of an ASIC design becoming increasingly expensive and the advances in
FPGA technology, the tendency for more and more ASIC designs to be implemented using FPGA technology is seen. Since
it takes at least a couple of months to design and verify an ASIC, the board designers usually have enough time to integrate
the ASIC device onto the PCB. With the trend of moving to FPGA design technology, we see that it takes a quarter of the
time to create a prototype of the FPGA ready for testing on the board. This means that the PCB designer now finds himself
on the critical path of the design trying to integrate this increasingly complex FPGA device onto the board.

The ASIC NRE costs and long design times cause the pin-out to be fixed early in the ASIC design cycle. In the case of an
FPGA there is more flexibility to change the I/O assignment during any part of the design cycle. The side effect of this
flexibility is that the I/O design may be changed during both the FPGA and PCB design cycles, causing additional iterations
of both the FPGA and PCB. This situation demands a tight interaction between the FPGA and PCB design teams and the
tools that are being used.

An aspect that is inherent to the FPGA design flow is the level of automation. An ASIC designer is typically more used to
tools that require some form of scripting or setup in order to do the job for them. However, today’s FPGA designers demand
a high level of automation from the tools. This automation should offer the FPGA designer a solution that enables him to
concentrate on the design, verification and debug of the FPGA. As detailed in the remainder of this paper, this high level of
automation is difficult to achieve between the tools used for FPGA design and PCB design.

Two worlds, Two Flows, Two Designers
Traditionally, the design of an FPGA and a PCB has been viewed as two different worlds using two different designers or
teams of designers. Integrating the FPGA on the PCB has fallen to the PCB designer or team. In the early days of small gate
count devices, both design processes were based on schematic capture tools often provided by the same vendor. With the
advent of multi-million gate devices, the use of HDLs now dominates the FPGA design process, whilst schematic capture is
still predominant for PCB design. This causes a situation where PCB and FPGA designers are using different toolsets for
their part of the design. Integrating a large complex 2000 pin FPGA on a dense PCB, while managing high speed and other
PCB layout constraints, is a difficult job on its own. Therefore, bringing these two worlds together is the key to getting the
integration job done.

The first problem to solve is to bring the two teams of designers together. There are situations in which one designer does
both the FPGA and board design, and this could be considered as the ideal situation for integrating the FPGA on a board.
However, the reality is that in the majority of cases there are multiple teams and management levels between the FPGA and
board designer, making the joint design task even more complex. Therefore, company management has to acknowledge the

Presented at IPC Printed Circuits Expo®
SMEMA Council APEX®

Designers Summit 04

S26-2-2

integration of an FPGA on a board as being a high level design problem that can only be solved by making sure both (FPGA
and PCB) teams have this issue as a common focal point.

Besides these personal aspects, there is also the problem of two tool sets that do not communicate. Having common tools
from one EDA vendor does help, but in the majority of organizations this is not the case. Therefore, it is important to
introduce a new technology that can bridge the gap between the FPGA and PCB design environments. This technology
should enable the designers to jointly work on the integration of an FPGA on the board facilitated by built-in data
management capabilities to keep track of any changes made by either one of them. This data management functionality
would also assist in situations where the two design teams are in different locations, as is often found in large organizations.
Therefore, the key to the problem of getting these two tool sets to work together is a tight interfacing between the tools in
both flows. This can be achieved by Mentor Graphics’ BoardLink Pro product (Figure 1), which enables the designer to
exchange the I/O design (and other properties related to integrating the FPGA on board) between the two tool sets.

Figure 1 - Forming a Bridge between Two Worlds

Today’s solution offers a basic integration between the FPGA and PCB flows, in the future, users will see tighter real-time
integration allowing both designers to work on the I/O assignment concurrently. The backplane of this integration is an
environment where FPGA, PCB layout and schematic entry tools are all working on the same set of data.

I/O Design
The term "I/O design" means assigning the pin-out of an FPGA. The result of this process is that the I/O ports of the top level
FPGA design are assigned to dedicated pins on the selected FPGA device. Since there are several constraints that influence
this I/O assignment process, we should first spend some time explaining them before discussing the I/O design process itself.
The constraints can be divided into two groups, the FPGA constraints and the PCB layout constraints.

The Constraints
The FPGA is constrained by the timing requirements of the design (timing constraints), the capacity and architecture of the
device (routing constraints) and the I/O standards applied to the I/O buffers (I/O constraints). The introduction of
configurable I/O buffers has meant greater flexibility within each device to support a wide range of low-voltage signaling
standards, but support of these standards imposes constraints on which standards may be used in close proximity to each
other. To maximize this flexibility, the devices group signals in to I/O Banks further complicating the assignment rules. Each
of these types of constraint influences the I/O assignment.

The other constraints that influence the I/O assignment process are the PCB constraints. Similar to the FPGA constraints, the
PCB influences the optimum I/O assignment depending on the number of routing layers available and the orientation of the
device on the board (routing constraints). In addition to the routing constraints, the PCB layout may have to meet Signal

S26-2-3

Integrity (SI) and timing constraints for the overall system design (SI and timing). Since these SI and timing constraints limit
the length, clearance and other physical aspects of the traces on the board, they also influence the location of the pins that
these I/O ports are assigned to.

The following list is the total set of constraints that influence the I/O design:
• FPGA timing
• FPGA routability
• FPGA I/O
• PCB routability
• PCB SI and timing

The I/O Design Process
Since these constraints are typically managed by different designers (e.g. FPGA designer, PCB designer, and SI designer)
and influence the same I/O assignment process, it is a difficult task to co-ordinate. The situation is complicated further by the
priority given to each set of constraints during the design process. For example, if the goal is to have a prototype of the board
as soon as possible, then the pin-out must be fixed early in the design process.

Ideally, the PCB layout designer should determine the pin assignment during the PCB layout process so that the PCB
constraints are met and the PCB optimized, while all FPGA constraints are automatically applied. In the past, the I/O
assignment was done automatically by the FPGA vendor place & route tools with little regard for the PCB requirements.
However, with the increasing complexity of the PCB this process needs to be managed by the design team. Therefore, the
typical process today is to define these constraints up-front before going into the synthesis and place & route process. Often
these constraints are defined in a tool specific constraint file that passes directly into the place & route tools or into the
synthesis tool and then forwarded to the place & route tool. Defining the constraints through the ASCII constraint file
requires the designer to understand the FPGA I/O pin details and assignment rules (FPGA I/O constraints) before being able
to assign an I/O port. The FPGA data book can help in this situation. However, it is still a manual and error prone task where
the designer not only has to concentrate on the FPGA I/O assignment but at the same time, has to ensure they do not violate
any of the constraints discussed in section 0. Since it is typically the FPGA designer who does this job, they probably are not
aware of the PCB layout details and so will not optimize this part of the design. Therefore, the assignment process is
dependant upon the knowledge of both the FPGA and PCB designer calling for flexibility in whom and when this task is
done.

Maintaining Consistency
So, in order to successfully integrate an FPGA on a board, the I/O assignment has to be possible at any time during the design
cycle and by any member of the design team. It is therefore difficult to keep the I/O design consistent amongst the design
team and design processes they operate. Keeping the I/O design consistent means that whenever one designer changes the
pin-out, the changes should be automatically propagated to the rest of the design tools involved in FPGA integration. For
example, if the FPGA designer decides to change the pin-out, this influences the way the traces are connected to the FPGA
on the PCB layout. Also, if the PCB designer decides to swap two pins, it influences the internal routing of the FPGA.
Having one integrated design environment for FPGA and PCB design would be the ideal solution. It is important to find a
vendor who can provide tools in both areas and currently offers the capability of exchanging crucial data with each of the
design processes. This is a first step in the integration, since the final goal is to offer a system design environment that
seamlessly works as one environment while offering dedicated technology for each of the design areas.

Automating the Process
We have seen that the process of I/O design is complex and may be done in multiple places by many designers while trying
to cope with all the surrounding constraints. Since this is often a manual and error prone task, it would reduce the risk and
costs to automate this task as much as possible. As mentioned earlier, one integrated design environment for both FPGA and
PCB design would be ideal but not practical. Due to the fixed architecture of the FPGA device, it is relatively easy to
automate the place and route process, and manage the timing and I/O constraints. The PCB layout process on the other hand
is still difficult to totally automate since there are simply too many variables to take into consideration while creating the
layout. During PCB layout, the designer typically routes the board while trying to avoid violating any of the timing, signal
integrity and routability constraints. Therefore, it is obvious that any tool designed to integrate an FPGA on a board should
focus on automating the FPGA constraints management, all while allowing the designer to concentrate on difficult to
automate tasks within the PCB layout. During this process the I/O design has to be tested constantly against all the FPGA
I/O, timing and routability constraints. The tool should have a built-in library containing all the necessary device information
to allow the constraints to be applied, as well as a good integration to all the tools in the FPGA and PCB design flows.

S26-2-4

Scalability
Today’s electronic designs must meet the conflicting needs of high complexity, lowest possible cost and the shortest time to
market. As FPGAs give designers flexibility in implementing their design with reasonably low cost, they increasingly
become a central component in electronic designs. Since FPGAs come in different die and package sizes, one can pick the
best FPGA for each design. However, while the electronic product evolves the design inside the FPGA may grow until it will
not fit into the selected FPGA anymore. Similarly, a larger FPGA than necessary may be selected since the complexity and
size of the design is not known yet. Using a larger device than necessary does increase the cost of the total design. Therefore,
it is common practice to reduce the size of the selected FPGA once the design is completed. This means that scaling up or
down to a larger or smaller device during the design phase is a very common step. Since each of the pins on an FPGA device
may have special properties (as we have discussed earlier and defined as FPGA I/O constraints), a designer needs to take the
migration to a larger or smaller device into account when assigning the I/O pins. When the designer decides to switch to a
larger or smaller FPGA device he does not have to re-assign the I/O. Since changing the I/O design always causes an
additional re-spin of the board design, it is crucial to the designer to avoid this step, if it is not really necessary. See Figure 2.

Figure 2 - Scalability of devices

Symbol Creation
As seen in the previous section, one problem in integrating the FPGA on a board is completing the I/O design such that both
the FPGA and PCB are optimized. The second problem is the creation of the FPGA data necessary to complete the board
layout process. In order to start the board layout process, one has to have a netlist of the board connectivity created using a
schematic capture tool. The schematic capture tool contains a symbol representation for each of the components on the board
along with the circuit connectivity. This means that in order to integrate the FPGA device onto a board, it is necessary to have
a schematic symbol created and connected to the appropriate components on the board.

Design Dependency
For conventional components with fixed pin-outs, the symbol is typically created once by the librarian or designer and stored
in a corporate library. Each pin on the schematic symbol of such a conventional component has a dedicated function or signal
that is fixed. In the case of an FPGA, the designer has the flexibility to assign a different function to each of the pins,
depending on how the FPGA has been designed. This means that although the company librarian can create a generic symbol
for each FPGA device, it is still unclear which signal is going to be assigned to each of the pins of this component. In this
case, each of the pins needs to have a generic name like IO1, IO2 or PAD1, PAD2 and it is the PCB and FPGA designer’s
task to know which signal to assign internally and externally to a specific pin.

The ability to create a symbol with the FPGA I/O port function or signal names attached to the pins of the symbol would
simplify the task of creating the schematic for the PCB designer. However, the problem with such a symbol is that it is no
longer generic and therefore becomes design dependent. It is because of this design dependency that the task of creating such
a symbol shifts from the librarian to the designer. Assuming that an organization has ten FPGA designers doing four designs
a year using four different types of FPGAs, this means that the amount of work creating these symbols increases from four

S26-2-5

generic symbols per year by the librarian to 4x10=40 symbols a year by the designers. This would not be a problem if the
process of creating such symbols were automated. However, all too often these symbols are created manually.

A couple of years ago the FPGA pin count was around 300 pins per device. However, today using Ball Grid Array (BGA)
packages, the devices go up to 2000 pins. Creating a single symbol to represent a 2000 pin device would not be practical as
the symbol would be too big to fit on even the largest schematic sheet. This forces the designer to fracture his symbol into
multiple smaller parts. These smaller parts must then all link back to the single FPGA component on the board. Although
there are ways to fracture the symbol based upon the empty FPGA device pin data, the FPGA designer may want to divide
the symbols based upon the separate functions created inside the design. This means that the fracturing scheme will also
become design dependant and increases the demand to use design dependant FPGA symbols.

One thing that increases the demand for having a local FPGA symbol but decreases the amount of work involved is the fact
that often not all the I/O pins of an FPGA are being used in a design. This means that designers could create smaller design
dependant symbols having only those physical pins that do have a signal assigned to them. The other unassigned pins can be
left unconnected or be automatically connected to power or ground without having to add them physically to the schematic
symbol.

Considering that it typically takes an engineer a day to create a 200 pin schematic symbol manually, this goes up to the
approximately ten days for today’s 2000 pin symbols. Add the extra demand of having a design specific set of fractured
symbols, then the amount of time taken to create the symbols increases, and as it is a manual task, so does the probability of
there being errors in the symbols. Therefore, it becomes clear that something has to be done to automate this process while
supporting all of these demands.

Maintaining Consistency
Consistency is a key aspect in integrating an FPGA on a board. The way this consistency is maintained in the PCB
environment is by creating a schematic on which the FPGA symbol is connected to the appropriate external signals.
Automating the process of creating such a schematic would not only help to reduce the error prone manual task of drawing
the schematic, it would also make sure the consistency is maintained between the FPGA and PCB design flow. New design
tools use the I/O design information to automatically generate the necessary symbols and schematics and maintains these
schematics if the I/O assignment changes. If the changes come from the FPGA side, then the schematic is simply updated and
the changes propagated to the PCB layout tools. However, tools exist that also create pin-swap information for the PCB
layout tools. The PCB designer is therefore able to change the I/O design by swapping pins of the same type during the PCB
layout process. (Figure 3) To maintain the consistency, the information about the swapped pins is then propagated back to the
FPGA flow in order to update and rerun the FPGA vendor place & route process. This consistency can be automatically
maintained if the tools keeps track of any changes to the I/O design from both the FPGA design tools and the PCB layout
tools.

Figure 3 - Reducing PCB Layers using the Ability to Swap FPGA Pins

Today’s FPGAs enable the designer to configure the I/O buffer using pre-defined I/O standards, such as LVTTL, LVCMOS,
LVDS, etc. The reference voltage levels of these I/O standards can be controlled by external voltage signals, where the group
of I/O pins sharing one common reference voltage is called an I/O bank. Once a certain I/O standard and its reference voltage
level have been selected inside an I/O bank, then there are constraints on which other I/O standards can be used within the
same I/O bank. This is what we referred to in the previous section as I/O banking rules. In the case of an FPGA where some
I/O ports demand different I/O standards that will violate the I/O banking rules, then the only way to implement these I/O
ports is to assign them in two different I/O banks. This does not only limit the I/O design process, it also limits the pin swap
capability since a swap of these two pins should not be possible during PCB layout. The limitation of this swap capability
based upon the I/O banking rules is called swap rules. In the PCB world, these swap rules are implemented by grouping
together the pins that can be swapped with each other, into a swap group. Since the selection of the I/O standards and
reference voltage levels is based on the design, these swap groups are also design dependant.

S26-2-6

Corporate Library
In the previous section we discussed the demand for creating design specific symbols. These symbols are typically stored in
the local project directory of the PCB design since they are created by the designer who usually does not have permission to
store them in the corporate library. The majority of companies have such a corporate library structure in which their
component information is stored. This corporate library is typically managed by a librarian, who creates the symbol and
maintains all the properties associated with it. These properties form the relationship between the component and the rest of
the systems surrounding the electronic design environment. The surrounding systems ensure the board can be produced and
the components are in stock when the production process starts. Because of these relationships, companies attach great value
to such a corporate component library and very often do not allow designers to use a component that is created locally. This
means that quite often the requirements for design dependent local symbols is in contradiction with corporate library policy.

A component is formed by two parts: the graphical schematic symbol and the properties. As discussed these properties are
the key elements that need to be stored in the corporate library since they form the link to the surrounding systems. The
graphical symbol on the other hand does not have such a critical role. If the benefits of using local FPGA symbols outweigh
the drawbacks of using a corporate library symbol to integrate the FPGA on the board, then companies might consider a local
symbol to be used in combination with the properties stored in the corporate library.

This would allow the designer to meet the need of creating (or preferably generating) a local, design dependant FPGA
symbol that could be fractured based upon design criteria. In addition to the local fracturing such a split between symbol and
properties would also allow the use of design specific swap groups stored locally with the FPGA symbol. With the library
integration a designer can reuse the corporate library data such as the component properties, while using a local design
specific fractured symbol with design specific pin swap criteria. (See Figure 4.)

Figure 4 - Using Local Symbols and Fractures in a Corporate Library Environment

Conclusion
Integrating an FPGA onto a board is not an easy task, as we have seen in this paper. Bringing together the two worlds of
FPGA and PCB design is a difficult task, since they both contain dedicated design teams and tools focused on their part of
the design. The FPGA on board integration also brings together the set of constraints coming from both worlds to one task:
the I/O design. We have seen that it involves creation of symbols and schematics, as well as generating and maintaining the
correct constraint files in order to keep the I/O design consistent throughout the entire FPGA and PCB design. The new
generation of design tools can form the bridge between FPGA and PCB design flows to overcome the problem of
maintaining the consistency between them. It also generates all necessary design dependent symbols and schematics and
makes sure that any changes that are being made during PCB layout make their way back into the FPGA flow. Integrating an
FPGA onto a board now becomes an automated process, that obsoletes the error prone manual tasks that designers where
facing up till now.

Chaos to Opportunity:
FPGA ↔ PCB Integration

Dave Brady
FPGA Advantage
Product Marketing Manager

Initials, Presentation Subject, Date 2001 - Company Confidential
2

Consumed By Chaos

The PCB team
asked for an illegal

IO assignment
AGAIN!

Why doesn’t
the product

work?

Another FPGA IO
change!!! I need to
re-route the PCB

Did I lock the
FPGA IO??

Why are the
critical FPGA
signals over-

driven?

Errors creating the
FPGA symbol for the
PCB schematic are

causing PCB re-spins

Isn’t Flexibility
supposed to be an

asset???

Initials, Presentation Subject, Date 2001 - Company Confidential
3

Harnessing Chaos

§ Faster time to market

§ High-speed FPGAs on high-speed PCBs

§ New manufacturing optimizations

Attacking FPGA ↔PCB integration barriers creates
competitive opportunities

Initials, Presentation Subject, Date 2001 - Company Confidential
4

Agenda
n What is Different?

n Business advantages of FPGAs

n FPGA ↔ PCB process

n FPGA ↔ PCB barriers

n FPGA ↔ PCB opportunities

n Integration cost model

n MGC Solutions

n Summary

Initials, Presentation Subject, Date 2001 - Company Confidential
5

What Is Different?

Initials, Presentation Subject, Date 2001 - Company Confidential
6

How Is FPGA IO Different?

Fixed Device Interfaces Run Time Flexible Device
Interfaces (FPGAs)

Low Pin Density Packages

Design Time Flexible
Interfaces (ASICs)

High Pin Density Packages

Low complexity PCBs High complexity PCBs

Low Frequency High Frequency

DIPs Quad Flat Packs Wire Bond BGAs Flip Chip BGAs

Initials, Presentation Subject, Date 2001 - Company Confidential
7

Business Advantages of FPGAs

Initials, Presentation Subject, Date 2001 - Company Confidential
8

Why Use FPGAs?

n Compared to ASICs
— Faster Time To Market

— No Non-Recurring Engineering (NRE) costs

— Late design Cycle Flexibility

— FPGA devices are 100% tested

n Compared to Digital Signal Processors (DSP)
— Very high performance

Initials, Presentation Subject, Date 2001 - Company Confidential
9

The FPGA ↔ PCB Process

Initials, Presentation Subject, Date 2001 - Company Confidential
10

Typical Design Flow
FPGA Design FlowFPGA Design Flow PCB Design FlowPCB Design Flow

Functional Design &
Verification

Synthesis

Place and Route

Lab testing

Component Creation

Logical Symbol
integration

Physical Symbol
integration

2

3

4 6

7

1

5

Initials, Presentation Subject, Date 2001 - Company Confidential
11

FPGA ↔ PCB Barriers

Initials, Presentation Subject, Date 2001 - Company Confidential
12

FPGA ↔ PCB Integration Barriers

Expertis
e

FPGA IO
Design

Process
Integration

Physical
Connectivity

Performance
Convergence

PCB Manufacturing
Optimization

Initials, Presentation Subject, Date 2001 - Company Confidential
13

FPGA IO Design

Initials, Presentation Subject, Date 2001 - Company Confidential
14

Example IO Standards
Single Ended IO Standards Double Ended IO Standards

DCI IO Standards

Initials, Presentation Subject, Date 2001 - Company Confidential
15

Pins For Everyone

CCLK

DONE M0

M1
M2

PROG_B
Pin Bank

3GIO

Clock
Single
Ended
Double
Ended

Initials, Presentation Subject, Date 2001 - Company Confidential
16

The Domino Effect of Pin Swapping

11

22

33

Source: Xilinx

Initials, Presentation Subject, Date 2001 - Company Confidential
17

Process Integration

Initials, Presentation Subject, Date 2001 - Company Confidential
18

Two Worlds: Two Design Flows

FPGA and PCB design teams typically do not FPGA and PCB design teams typically do not
communicatecommunicate

Initials, Presentation Subject, Date 2001 - Company Confidential
19

Manual Data Re-Entry Process =
ERRORS!

Initials, Presentation Subject, Date 2001 - Company Confidential
20

PCB Library Integration Barriers

n PCB libraries must be right è
Link to manufacturing and
assembly

n FPGA symbols CHANGE!

n PCB libraries are NOT
designed to support
dynamic symbols

Initials, Presentation Subject, Date 2001 - Company Confidential
21

Physical Connectivity

Initials, Presentation Subject, Date 2001 - Company Confidential
22

FPGA IO Design Barriers
Define Define

Top Level Top Level
SignalsSignals

SynthesisSynthesis

FPGA FPGA
Place and Place and

RouteRoute

PCB Symbol PCB Symbol
& Package & Package
CreationCreation

PCB Place PCB Place
and Routeand Route

PCB PCB
Schematic Schematic
IntegrationIntegration

Logical IO Definition
Add Some Physical IO
Definitions (clocks, etc..)

Complete Physical IO
Definitions (Inside the chip
perspective only)

First Time FPGA
context is defined

Initials, Presentation Subject, Date 2001 - Company Confidential
23

Traditional FPGA Symbol Barriers

1500 Pin device

560 Pin device

100 Pin device

Initials, Presentation Subject, Date 2001 - Company Confidential
24

Performance Convergence

Initials, Presentation Subject, Date 2001 - Company Confidential
25

System Performance Barriers

TPD=Pass

TPD=Pass

TPD=Fail

n Changing the
FPGA IO is easy

n Freezing the
FPGA IO requires
effort

n Changing the
FPGA IO will
impact the PCB
AND the FPGA

TPD=Pass
TPD=Fail

TPD=Fail

TPD=Pass
TPD=Pass

TPD=Pass

Initials, Presentation Subject, Date 2001 - Company Confidential
26

Required Expertise

Initials, Presentation Subject, Date 2001 - Company Confidential
27

IO Knowledge Barriers

PCB Specific
Supporting Devices

Routability
LVDS Route requirements
High Speed IO locations

FPGA Specific
Internal FPGA impacts

Routability
Performance

Device Configuration
Special high-speed IO
Clock IO Common

Device configuration pins
Differential signal pin pairing

Supported IO standards
IO standard co-habitation rules

FPGA IO Pin swapping rules
Power and ground requirements

Matching electrical characteristics

System Specific

Passive/Active devices
PCB impacts
Performance

LVDS requirements
Turn high-speed IO on/off

High Speed IO locations

Initials, Presentation Subject, Date 2001 - Company Confidential
28

Communication Barriers

PCB

FPGA

System

Are They
Talking?

Initials, Presentation Subject, Date 2001 - Company Confidential
29

• FPGA Design expertise required

• System Design expertise required

• PCB Design expertise required

• PhD in IO Design

• Inside the device expertise

• System design device
expertise

• All experts must
communicate

• Need internal & external context

• PCB Symbol, package & mapping

• Large Symbols

Summarizing Barriers

Expertis
e

• Error prone communications

• “Over the wall” design synchronization

• Problematic PCB Library integration

• Internal FPGA timing closure

• PCB timing & signal integrity
closure

• Optimize the FPGA ↔ PCB
interface

FPGA IO
Design

Process
Integration

Physical
Connectivity

Performance
Convergence

PCB Manufacturing
Optimization

Initials, Presentation Subject, Date 2001 - Company Confidential
30

FPGA ↔ PCB Opportunities

Initials, Presentation Subject, Date 2001 - Company Confidential
31

Integration Barrier Opportunities

$ Increase Profit Margins $

Expensive

FPGA IO
Design

Process
Integration

Physical
Connectivity

Performance
Convergence

PCB Manufacturing
Optimization

Working Design

Initials, Presentation Subject, Date 2001 - Company Confidential
32

PCB Layer Reduction Through IO Optimization

FPGA 1 FPGA 2

PCB

PCB

Non-Optimize IO

Optimized IO

FPGA 1 FPGA 2

Initials, Presentation Subject, Date 2001 - Company Confidential
33

Component Count Reduction

FPGA 1 FPGA 2

PCB

Component

PCB

No Component

Conventional

Opportunities

FPGA 1 FPGA 2

Reduces PCB Layers!!!!

Initials, Presentation Subject, Date 2001 - Company Confidential
34

Integration cost model

Initials, Presentation Subject, Date 2001 - Company Confidential
35

“Change & Ripple”
Corporate Library

Initials, Presentation Subject, Date 2001 - Company Confidential
36

Typical Design Flow
FPGA Design FlowFPGA Design Flow PCB Design FlowPCB Design Flow

Functional Design &
Verification

Synthesis

Place and Route

Lab testing

Component Creation

Logical Symbol
integration

Physical Symbol
integration

4 2

3

1

C
PCB

FPGA

6

7

5

C
PCB

FPGA Update

Initials, Presentation Subject, Date 2001 - Company Confidential
37

Integration Cost Model
n Primary costs

— Creation (once)
n Logical symbol of FPGA for PCB schematic
n Physical symbol & associated data

— Update (n times)
n Symbol of FPGA for PCB schematic
n Physical symbol & associated data

— Re-spin PCB due to FPGA integration
n Manual data entry error
n FPGA – PCB interface out of date
n System Performance

— Lost Opportunity
n Lost sales each day product introduction is delayed

C
Product

Opportunity

1 2

3

5 6

7

C
PCB Schematic

FPGA Symbol

C
PCB Schematic

Symbol Update

C
PCB Re-spin

Re-entry Errors

Initials, Presentation Subject, Date 2001 - Company Confidential
38

$0

$1,000

$2,000

$3,000

$4,000

$5,000

$6,000

$7,000

$8,000

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

FPGA Pins

0

5

10

15

Simple Symbol Creation Model

C
PCB Schematic

FPGA Symbol
C

FPGA ↔ PCB Integration

Total
=

Cost ($) Time (Days)

Initials, Presentation Subject, Date 2001 - Company Confidential
39

$0

$5,000

$10,000

$15,000

$20,000

0 500 1,000 1,500 2,000

FPGA Pins

Symbol Update Costs
C

FPGA ↔ PCB Integration

Total
= +C

PCB Schematic

FPGA Symbol
C

PCB Schematic

Symbol Update

Symbol Creation

30 IO Iterations

20
10

Initials, Presentation Subject, Date 2001 - Company Confidential
40

Symbol Update Effort
T

FPGA ↔ PCB Integration

Total
= +T

PCB Schematic

FPGA Symbol
T

PCB Schematic

Symbol Update

0

2

4

6

8

10
12

14

16

18

20

0 500 1,000 1,500 2,000

FPGA Pins

Days

Symbol Creation

30 IO Iterations
20

10

Initials, Presentation Subject, Date 2001 - Company Confidential
41

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

0 500 1,000 1,500 2,000

FPGA Pins

Data Entry Errors è PCB Re-spin Costs
C

FPGA ↔ PCB Integration

Total
= +C

PCB Schematic

FPGA Symbol
C

PCB Schematic

Symbol Update
C

PCB Re-spin

Re-entry Errors

+

Symbol Creation

30 IO Iterations

20

10

Initials, Presentation Subject, Date 2001 - Company Confidential
42

Data Entry Errors è More Delays

0

5

10

15

20

25

30

35

0 500 1,000 1,500 2,000
FPGA Pins

Days

T
FPGA ↔ PCB Integration

Total
= +T

PCB Schematic

FPGA Symbol
T

PCB Schematic

Symbol Update
T

PCB Re-spin

Re-entry Errors

+

Symbol Creation

30 IO Iterations 20

10

Initials, Presentation Subject, Date 2001 - Company Confidential
43

Other Costs To Consider

Non-linear effects è Many high-speed signals

PCB re-spin due to Design Errors

PCB re-spins to achieve system performance

PCB Library Integration

Maintaining Fractured Symbols

Routing & re-routing the package in the physical layout

Connecting/Updating the symbol in the schematic

Symbol to Package Mapping Update

Symbol to Package Mapping Creation

Package Creation

Opportunity è $$

Initials, Presentation Subject, Date 2001 - Company Confidential
44

Symbol Costs Only
Corporate Library

Initials, Presentation Subject, Date 2001 - Company Confidential
45

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

0 5,000 10,000 15,000 20,000

Multiple FPGAs Per PCB

10 FPGAs

20

10

0

30

FPGA Pins/PCB

Initials, Presentation Subject, Date 2001 - Company Confidential
46

MGC Proven Solutions

Initials, Presentation Subject, Date 2001 - Company Confidential
47

• MGC Consulting

• MGC Support

• BoardLink Pro

MGC FPGA ↔ PCB Concurrent System

Expertis
e

• PADS Designer,
PowerPCB

• DxDesigner/
DesignView,
Expedition

• Design Architect,
Board Station

• FPGA Advantage

• FPGA Vendor
Place and Route

• BoardLink Pro

• Precision
Physical

• HyperLynx,
Tau & ICX

FPGA IO
Design

Process
Integration

Physical
Connectivity

Performance
Convergence

PCB Manufacturing
Optimization

Initials, Presentation Subject, Date 2001 - Company Confidential
48

Summary

Initials, Presentation Subject, Date 2001 - Company Confidential
49

FPGA PCB Barriers Are Increasing
Physical connectivity is needed for all FPGAs

Initials, Presentation Subject, Date 2001 - Company Confidential
50

Attacking FPGA ↔ PCB Synchronization pays!!

Ø Initially è Barrier for
design success

$0

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

$3,000,000

$3,500,000

0 5,000 10,000 15,000 20,000
FPGA Pins/PCB

Symbol
Creation

25 FPGA IO
Iterations

Ø Opportunity è
Increased Profit
Margins

FPGA 1 FPGA 2

Initials, Presentation Subject, Date 2001 - Company Confidential
51

MGC Has the Complete Solution Today!

FPGA
Advantage

Board Station

PowerPCB

BoardLink Pro

Expedition

Initials, Presentation Subject, Date 2001 - Company Confidential
52

	Home
	Titles
	Technical Paper
	Slides

