Presented in the ECWC 10 Conference at IPC Printed Circuits Expo®, SMEMA Council APEX® and Designers Summit 05

Japan's JISSO Technology Roadmaps

Henry H. Utsunomiya Interconnection Technologies, Inc. Suwa Nagano, Japan

History

Japan has a long history of publishing very important technology roadmaps. Some of the Japanese roadmaps published in the past are:

JPCA Roadmaps

Report on the Technology Roadmap for Advanced Systems Integration and Packaging English version 1998, translated by IPC.What Makes Dreams Come True? A roadmap of microvia technology published in 1998

JIEP Roadmaps

The Technology Roadmap for Electronic Packaging Technology in Japan (1999 – 2010) English version September 1998, translated by SEMI

EIAJ / (JIETA – Japan Electronics and Information Technology Industries Association) Report on Semiconductor Packaging Technologies, December 1996 Multi Media Vision 2005, March 1997 Report on MCM / KND Packaging Technologies, October 1997

In 1999 Japanese technologists decided to go to **'JISSO'**. JISSO is a made up word that means the total system integration. It encompasses all relevant technologies, such as semiconductor ICs and their packages, other electronic components, PWB, materials, interconnecting structures, environmental protection, and system design.

This was a major decision on the part of the Japanese technology organizations. In 1999 and again in 2001 and 2003 there has been a **JISSO** technology roadmap.

The first JISSO roadmap was published in 1999. The Japanese version was published in August 1999 and an English version followed in September 2000. The second JISSO roadmap was then published in April of 2001. This roadmap was also published in English. The 2003 JISSO roadmap was only published in Japanese.

Roadmap organization

JISSO roadmaps are organized in a unique layout as compared to the IPC or NEMI roadmaps. The chapter layout is in Product Type sections. There are sections on Palmtops, DVD's, Cellular phones, Notebook PC's, etc. The sections are reviewed before each publication and some are dropped and others are added as the market changes.

The Japan JISSO Technology Roadmap is an excellent document. The definition of JISSO technology is fully explained in the Foreword and in the Preface. The roadmap is developed starting with a very thorough list of survey questions administered to many, many companies throughout Japan's electronic industries. This is a process that is unique to Japan and probably would not be successful in the U.S or Europe.

The roadmap editorial board members do outstanding work analyzing the survey results and drawing conclusions, which are manifested in the technology trends reported in this roadmap. If one believes that completing a survey is difficult, think of the difficulty of analyzing all of the data in a cohesive manner.

JISSO sees itself as a system integrator encompassing a wide range of technology fields. As the technology definition of JISSO indicates, the roadmap should be considered from a macro viewpoint as "system technology encompassing areas such as function, configuration, manufacturing design, interconnect technology, and cooling technology.

Japan gained the position of an electronics leader by developing an industry characterized by volume production of standardized products -- a production style that Japan has been excellent in. Manufacturing equipment, the development of which Japan has contributed to, has evolved to a stage that allows everybody to manufacture products.

In Japan, attention is focused on cellular phones and personal digital assistants (PDAs) as mobile information equipment that

can obtain up-to-date information via the Internet. In addition, an information technology (IT) revolution as represented by the keyword "mobile" is accelerating its progress. This is closely related to the reason why the Japan Electronics & Information Technology Industries Association (JEITA) was born from the Electronics Industries Association of Japan (EIAJ). As this digital networked information society is advancing, electronic information equipment is rapidly progressing towards higher performance, more advanced functions (diversification and integration), and smaller size and higher mobility (higher density). In this circumstance, greater importance is placed on the JISSO technology that provides an interface between the semiconductor integrated circuit technology, which is the heart of the basic technology that will support this advance, and the electronic information equipment.

The environment around **JISSO** is diversified and harsh. Various **JISSO** technologies have been proposed to implement higher-density semiconductor packages providing more advanced functions. The purpose of the **JISSO** roadmap publication is to provide a shared viewpoint regarding future trends and forecast targets in **JISSO** technology. In addition, by publishing the Roadmap, JEITA expressed its desire that the Japanese **JISSO** technology industry should transmit information to the world and that Japan should keep a competitive advantage in **JISSO** technology. The primary aim of the Roadmap was to stimulate technology communication with principal industries associations and research unions in the US, Europe, Taiwan, Singapore, and other countries.

Technology Descriptions

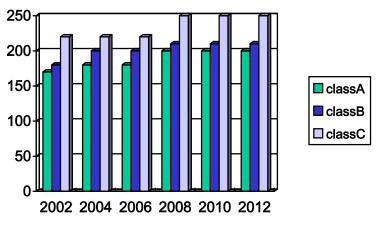
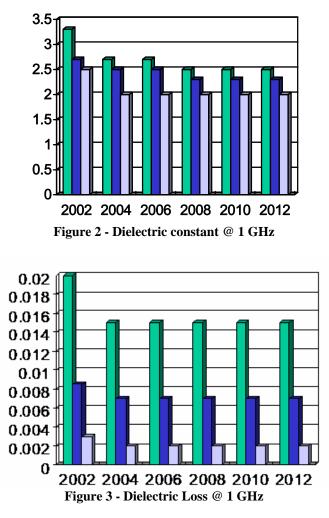
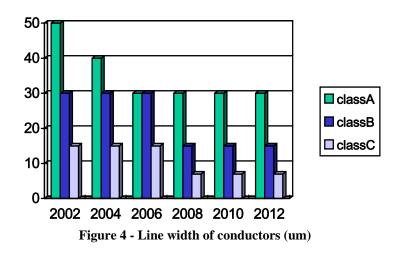
The following table (Table 1.) has been used in all three **JISSO** roadmaps. It defines the different classifications of products. Class A or conventional boards are generally available and represent 80% of all PCB's. Class B products are considered leading edge and represent15% of the total and Class C products are state of the art representing 5 %.

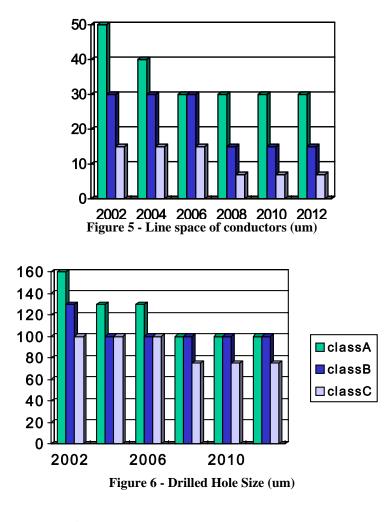
Table 1 - I Toduct Classification								
Class	Required Production	Production Ratio	Cost					
	Technology							
Class A	General Technology	80 %	Reasonable					
Conventional								
Class B	Advanced Technology	15 %	Cost up					
Leading Edge								
Class C	Most Advanced Technology	5 %	High Cost					
State of the Art								

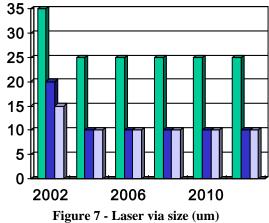
Table 1 - Product Classification

Base Materials for Buildup layers

The following three figures (Figures 1, 2, and 3.) represent material properties and their trends as seen by the JISSO roadmap survey participants. Glass transisition temperature, dielectric constant and dielectric loss are charted. From the tables one can draw the conclusion from the Tg chart that heat resistance for Pb-free soldering is a focus of the survey participants as is lower dielectric characteristics for high speed applications. (These tables are taken from a presentation by Henry H. Utsunomiya of Interconnection Technologies, Inc.)


Figure 1 - Glass Transition Temperature - Tg. (oC)



Buildup Technology Conductor Specifications

In Figures 4, 5, 6, and 7, depicting Japanese build up technology; we can see that Japan is looking for Improvement based on existing technology and novel circuit generation technology developments. Build up technology is one of the focus technologies in Japan and they continue to set the standard for development. These figures represent Japanese rigid board attributes on line width and spaces, and drilled and laser via dimensions.

2005 Japan Jisso Technology Roadmap

February 22, 2005 Henry H. Utsunomiya Interconnection Technologies, Inc. E-mail: henry-u@ra2.so-net.ne.jp

Contents

- Jisso Technology Roadmap Introduction
- Japan PWB Industry Status
- PWB Base Material Roadmap
- PWB Technology Roadmap
- Difficult Challenges
- Summary

Jisso Technology Roadmap

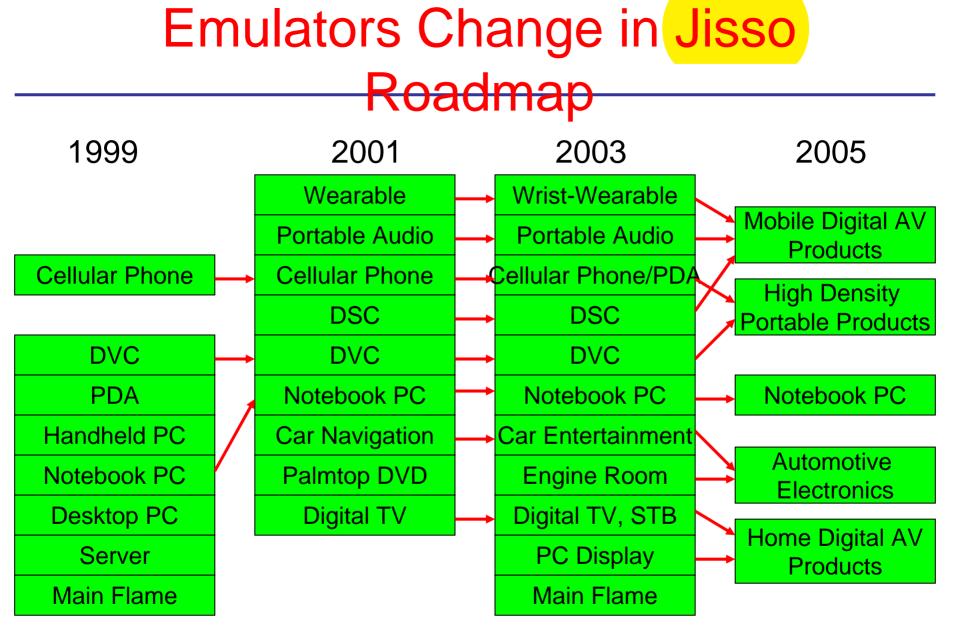
Jisso Roadmap Committee Member

Chairman: Kunuaki Takahashi, Toshiba Vice Chairman: Hisao Kasuga, NEC Henry Utsunomiya, ICT WG1 Leader: Hiroshi Manita, Casio WG2 Leader: Absent WG3 Leader: Ryo Haruta, Renesus WG4 Leader: Jun Matsui, TDK WG5 Leader: Henry Utsunomiya, ICT WG6 Leader: Takahiro Endo, Panasonic

Working Group 5 (PWB) Member

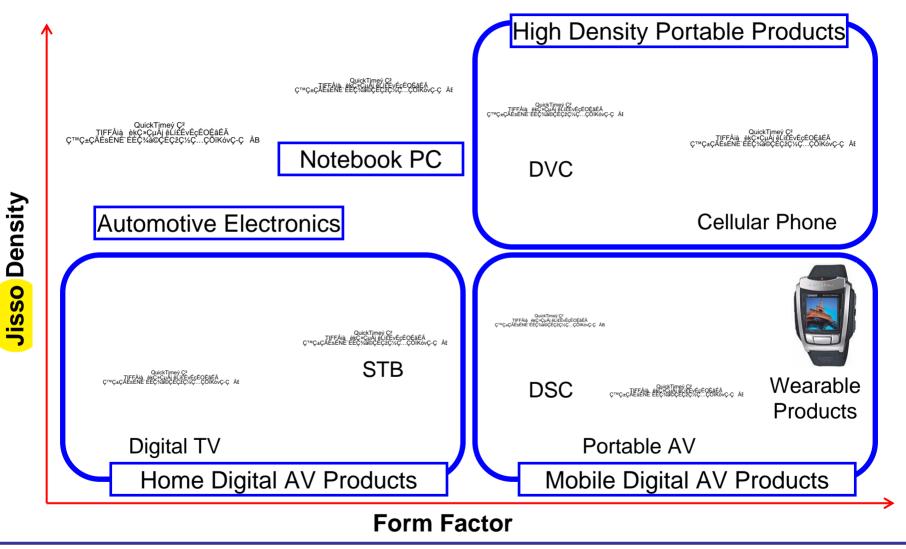
- Henry Utsunomiya: ICT
- Ryusuke Yajima: ITI
- Toshiki Sasabe: Rohm & Hass
- Takeshi Gappa: CMK
- Kimio Iwasawa: TNSCi
- Hidetaka Hayashi: University Tokyo
- Kazuharu Kobayashi: Fujikura
- Fumio Akama: Mektron

- Masanao Yano: Ibiden
- Fumihiko Hayano: Shinko
- Kiyoshi Tomita: Kyocera SLC
- Masaaki Minimi: Kyocera
- Toshiyuki Toyoshima: Mitsubishi
- Toyoo Tobe: Hitachi Chemical



2005 Jisso Roadmap

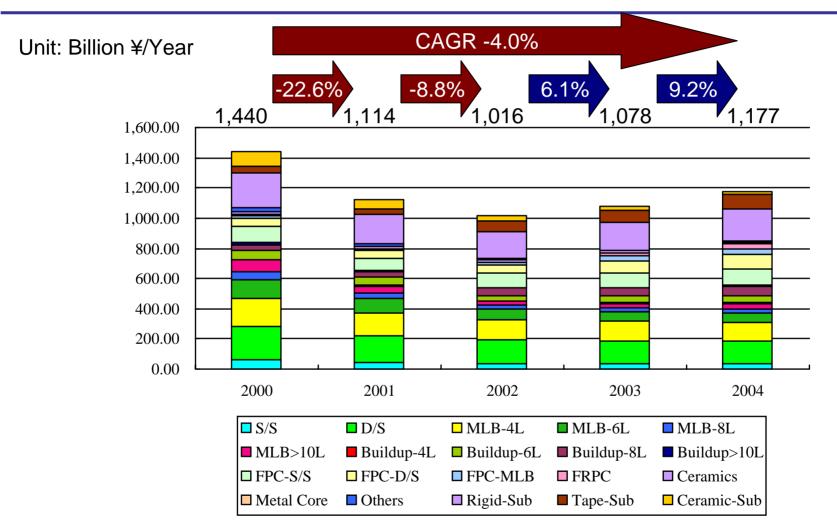
- 1. Introduction
- 2. Electronics Products
- 3. Electronics Devices & Components
 - 1. Semiconductor Packaging
 - 2. Passive Components & Connectors
 - 3. Printed wiring Boards
 - 4. Assembly & Mounting Facilities
- 4. Topics
- 5. Appendix



2005 Jisso Roadmap Emulators

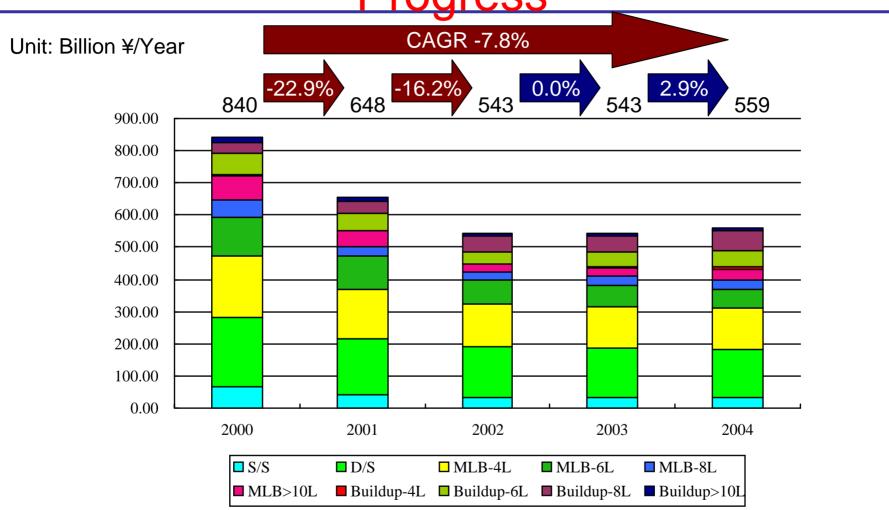
2005 Japan <mark>Jisso</mark> Technology Roadmap in ECWC, February 2005

JEITA


Current Japanese PWB Status

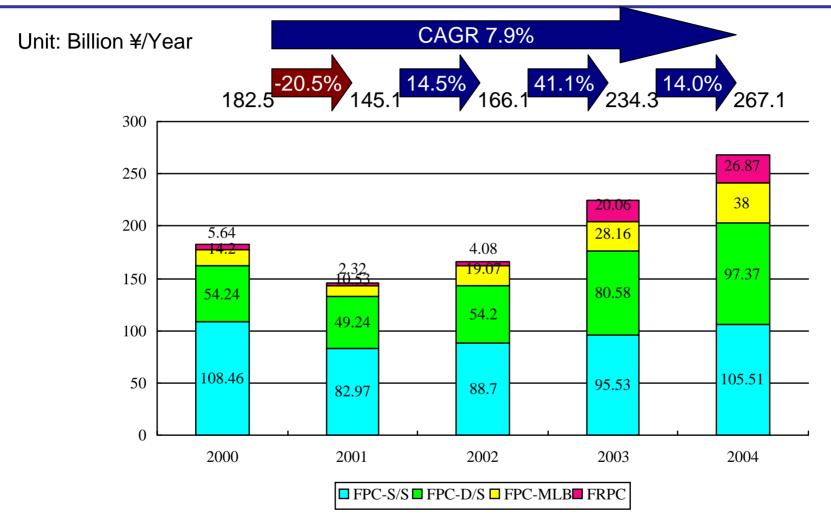
- Japanese PWB Total Sales Amount
 - Mother Board
 - FPC
 - Packaging Substrate

PWB Production Amount Progress


Source: Electronic Circuits Industry Survey Report 2004 Edition, JPCA

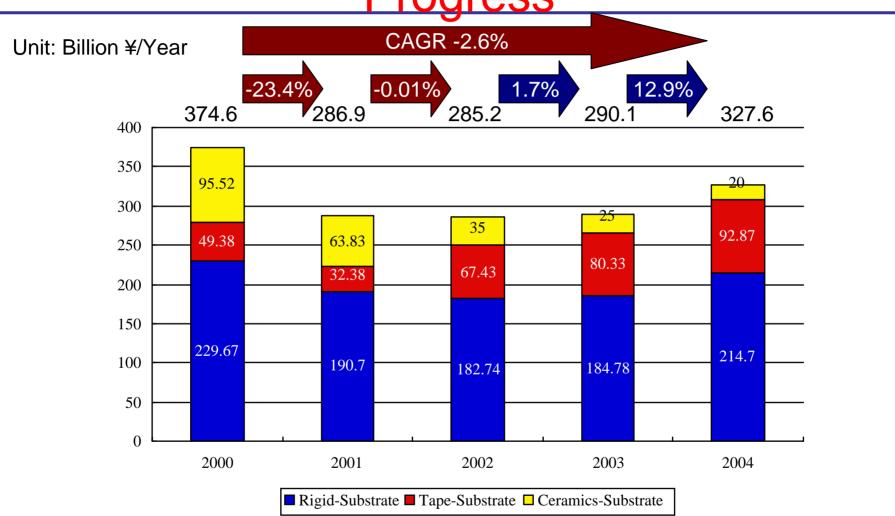
Mother Board Production Amount

Progress



Source: Electronic Circuits Industry Survey Report 2004 Edition, JPCA

FPC Production Amount Progress


Source: Electronic Circuits Industry Survey Report 2004 Edition, JPCA

Substrate Production Amount

Progress



Source: Electronic Circuits Industry Survey Report 2004 Edition, JPCA

PWB Products Positioning

2005 PWB Technology Roadmap

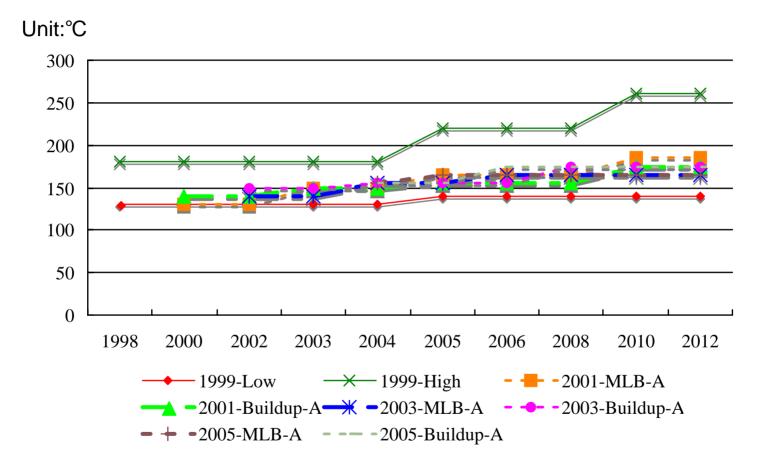
- 1. Rigid Printed Wiring Boards
 - Single-sided, Double-sided, Multilayer, Buildup
- 2. Flexible Printed Wiring Boards
 - Single-sided, Double-sided, Multilayer, Rigid-flex
- 3. Packaging Substrate
 - Tape, Rigid, Buildup, Ceramics
- 4. Common Technology
- 5. Difficult Challenges: Embedded Components
- 6. Gap Analysis

2005 PWB Technology Roadmap

Class A: Conventional Technology for volume production

Class B: Leading Edge Technology for High-end Volume Production

Class C: State of the Art Technology for High-end Small Volume Production and Prototype

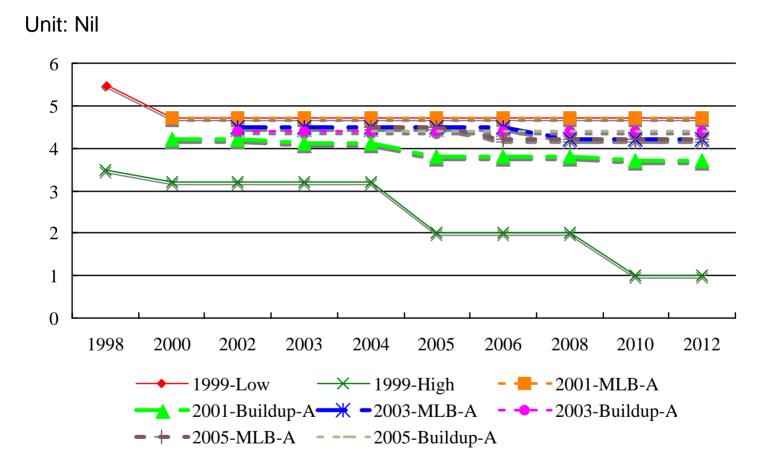

Base Material for Rigid PWB

- •Glass Transition Temperature
- •Dielectric Constant
- Diffusion Factor
- •Co-efficient of Thermal Expansion

Glass Transition Temperature Trends

Glass Transition Temperature Trends

- 1 1	nit	.°C
U	ΠIL	:°C

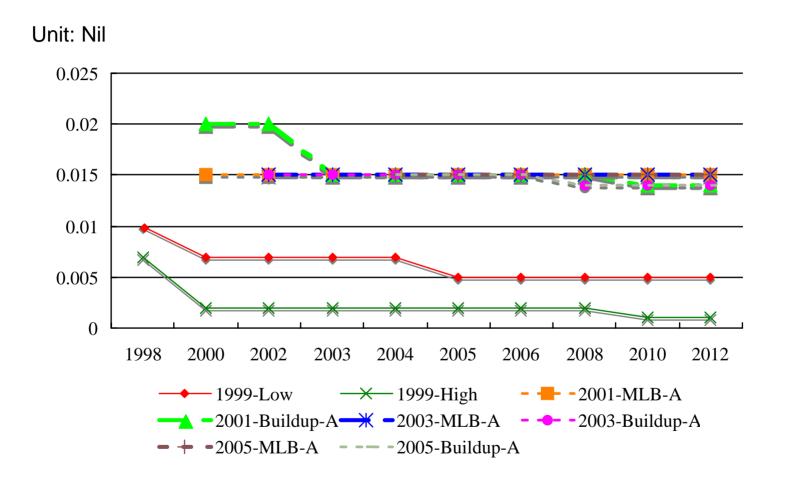

Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	155	155	175	175	175	175
	Core Layer	155	165	165	165	165	165
Multi I	Layer	155	165	165	165	165	165
Double	e-sided	135	135	135	150	150	150
Single	-sided	115	115	115	115	115	115

Class A Products

Dielectric Constant Trends

Jino

Dielectric Constant Trends

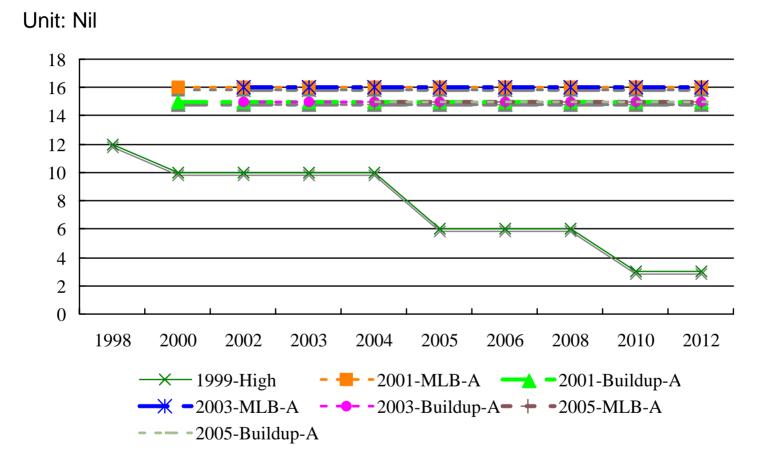

@ 1MHz							
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	4.7	4.7	4.7	4.7	4.7	4.7
	Core Layer	4.7	4.7	4.5	4.5	4.5	4.5
Multi I	Layer	4.7	4.7	4.5	4.5	4.5	4.5
Double	e-sided	4.7	4.7	4.7	4.7	4.7	4.7
Single	-sided	4.8	4.8	4.8	4.8	4.8	4.8

Class A Products

Dielectric Loss Trends

Vino

Dielectric Loss Trends


@ 1MHz							
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	0.015	0.015	0.014	0.014	0.014	0.014
	Core Layer	0.015	0.015	0.015	0.015	0.015	0.015
Multi	Layer	0.015	0.015	0.015	0.015	0.015	0.015
Double	e-sided	0.018	0.018	0.018	0.018	0.018	0.018
Single	-sided	0.035	0.035	0.035	0.035	0.035	0.035

Class A Products

X-Y Direction CTE Trends

Vino

X-Y Direction CTE Trends

Unit: ppm/	C						
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	15	15	15	15	15	15
	Core Layer	16	16	16	16	16	16
Multi	Layer	15	15	15	15	15	15
Double	e-sided	16	16	16	16	16	16
Single	-sided	60	60	60	60	60	60

Class A Products

Rigid PWB Specifications Trends

- •Min. Line/Space
- •Min. Via Hole Diameter/Land Diameter

Min. Line/Space Trends

Unit: micror	n meter						
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	75/75	50/50	50/50	50/50	50/50	50/50
	Core Layer	75/75	75/75	50/50	50/50	50/50	50/50
Mult	i Layer	100/100	100/100	75/75	75/75	75/75	75/75
Doub	le-sided	100/100	100/100	75/75	75/75	75/75	75/75
Singl	e-sided	125/100	125/100	100/75	100/75	100/75	100/75

Class A Products

Min. Via Hole/Land Diameter Trends

Unit: micron meter									
Item	Description	2004	2006	2008	2010	2012	2014		
Buildup	PTH	200/450	200/450	150/300	150/300	150/300	150/300		
	IVH	200/400	200/400	125/325	125/325	125/325	125/325		
	M∨H	100/250	100/250	80/200	80/200	80/200	80/200		
Multi La	ayer PTH	200/400	200/400	150/350	150/350	150/350	150/350		
Doub	le-sided	300/500	250/450	250/400	200/350	200/350	150/300		
Singl	e-sided	500/1000	500/1000	500/1000	500/1000	500/1000	500/1000		

Class A Products

Base Material for Flexible PWB

- •Glass Transition Temperature
- •Dielectric Constant
- Diffusion Factor
- •Co-efficient of Thermal Expansion

Glass Transition Temperature Trends

Unit:°C

Item	2004	2006	2008	2010	2012	2014
Class A	70	75	75	80	80	80
Class B	105	120	120	130	130	130
Class C	120	130	140	150	150	150

Adhesive Material Property

Dielectric Constant Trends

@ 1MHz

Item	2004	2006	2008	2010	2012	2014
Class A	4.0	4.0	4.0	4.0	4.0	4.0
Class B	3.2	3.2	3.2	3.2	3.2	3.2
Class C	3.0	3.0	3.0	3.0	3.0	3.0

Dielectric Loss Trends

@ 1MHz

Item	2004	2006	2008	2010	2012	2014
Class A	0.03	0.03	0.03	0.03	0.03	0.03
Class B	0.01	0.01	0.01	0.01	0.01	0.01
Class C	0.007	0.007	0.007	0.007	0.007	0.007

X-Y Direction CTE Trends

Unit: ppm/°C						
ltem	2004	2006	2008	2010	2012	2014
Class A	27	20	20	20	20	20
Class B	16	16	16	12	12	12
Class C	16	12	12	12	12	12

Class A Products

Flexible PWB Specifications Trends

•Min. Line/Space

•Min. Via Hole Diameter/Land Diameter

Min. Line/Space Trends

Unit: micron meter									
Item	Description	2004	2006	2008	2010	2012	2014		
Multi Layer	Outer Layer	75/75	60/60	60/60	40/40	40/40	40/40		
	Inner Layer	70/70	60/60	60/60	50/50	50/50	50/50		
Doub	Double-sided		75/85	60/70	60/70	50/60	50/60		
Singl	Single-sided		40/50	40/50	30/40	30/40	30/40		

Class A Products

Min. Via Hole/Land Diameter Trends

Unit: microi	Unit: micron meter									
Item	Description	2004	2006	2008	2010	2012	2014			
Multilayer	PTH	300/500	250/450	250/450	200/400	200/350	150/400			
	IVH	300/550	200/450	200/450	150/400	150/350	100/300			
	Surface Via	125/300	125/275	100/250	100/250	100/250	100/250			
Double-sided		150/350	150/350	100/300	100/300	100/300	100/300			
Singl	Single-sided		150/350	100/300	100/300	100/300	100/300			

Class A Products

Base Material for Packaging Substrate

- •Glass Transition Temperature
- •Dielectric Constant
- Diffusion Factor
- •Co-efficient of Thermal Expansion

Glass Transition Temperature Trends

Unit:°C							
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	180	180	200	200	200	200
	Core Layer	200	200	210	210	210	210
Riç	gid	200	200	210	210	210	210
Таре		280	280	280	280	280	280
Ceramics		N/A	N/A	N/A	N/A	N/A	N/A

Class A Products

Dielectric Constant Trends

@ 1MHz							
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	3.4	3.4	3.4	3.0	3.0	3.0
	Core Layer	4.0	4.0	4.0	4.0	4.0	4.0
Rig	gid	3.7	3.7	3.3	3.1	3.0	3.0
Таре		3.5	3.5	3.5	3.5	3.5	3.5
Ceramics		4 - 20	4 - 20	4 - 20	4 - 20	4 - 20	4 - 20

Class A Products

Dielectric Loss Trends

@ 1MHz							
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	0.02	0.02	0.015	0.015	0.015	0.015
	Core Layer	0.013	0.013	0.013	0.013	0.013	0.013
Rig	gid	0.015	0.014	0.012	0.009	0.009	0.009
Таре		0.001	0.001	0.001	0.001	0.001	0.001
Ceramics		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005

Class A Products

X-Y Direction CTE Trends

Unit: ppm/	C						
Item	Description	2004	2006	2008	2010	2012	2014
Buildup	Buildup Layer	15	15	12	12	12	12
	Core Layer	13	11	11	11	11	11
Riç	gid	14	14	13	13	12	12
Таре		20	20	16	16	16	16
Ceramics		4 - 12	3 - 12	3 - 12	3 - 12	3 - 12	3 - 12

Class A Products

Packaging Substrate Specifications Trends

•Min. Line/Space

•Min. Via Hole Diameter/Land Diameter

Min. Line/Space Trends

Unit: micron meter

Item	2004	2006	2008	2010	2012	2014
Buildup	40/40	30/30	30/30	20/20	20/20	15/15
Rigid	50/50	40/40	35/35	35/35	35/35	35/35
Таре	25/25	20/20	20/20	15/15	15/15	15/15
Ceramics	75/75	75/75	50/50	50/50	50/50	50/50

Class A Products

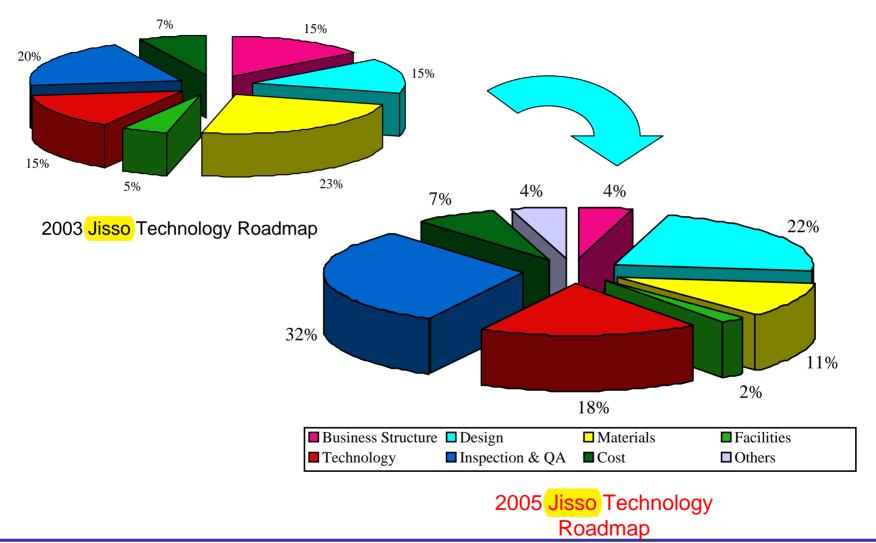
Min. Via Hole/Land Diameter Trends

Unit: micron meter								
Item	Description	2004	2006	2008	2010	2012	2014	
Buildup	Core PTH	100/150	100/150	100/140	100/140	100/140	100/140	
	MVH-Laser	60/110	60/110	40/80	40/80	40/80	30/70	
	MVH-Photo	80/120	80/120	80/120	80/120	80/120	80/120	
R	Rigid		75/180	50/170	50/170	50/170	50/170	
Таре		80/130	80/130	50/90	50/90	50/90	30/60	
Cer	amics	75/75	75/75	75/75	50/50	50/50	50/50	

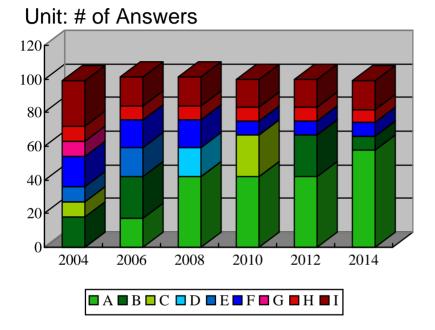
Class A Products

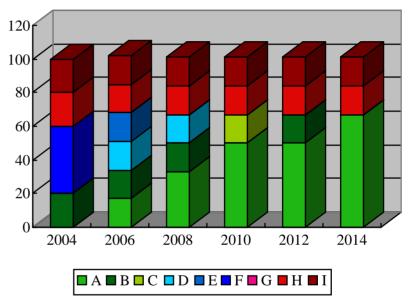
Embedded Components

- •Embedded Active Devices
- •Embedded Passive Devices
 - Resistors
 - •Capacitors
 - Inductors


Embedded Components

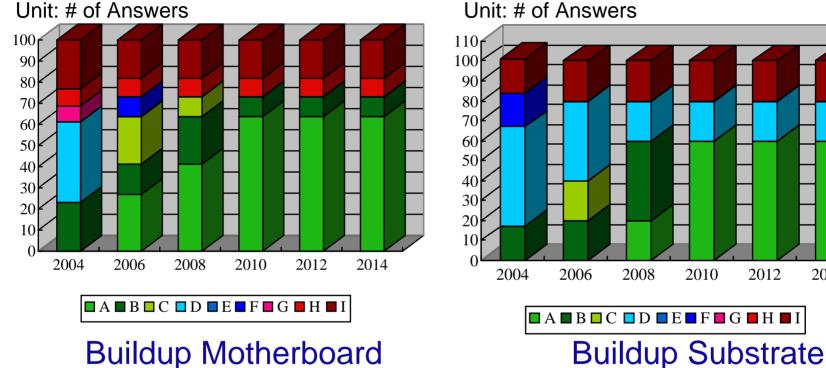
Color	Code	Description
	А	In Volume Production
	В	Prototype Production for Customers
	С	Prototype Production for Sale Promotion
	D	Prototype Production for Internal Evaluation
	E	R & D for Production Process
	F	Investigation on Materials & Production Process
	G	Recognized Future Useful Technology But No Action
	Н	No Intention to R & D for Embedded Technologies
		Doesn't Understand Well


Questions for Embedded PWBs

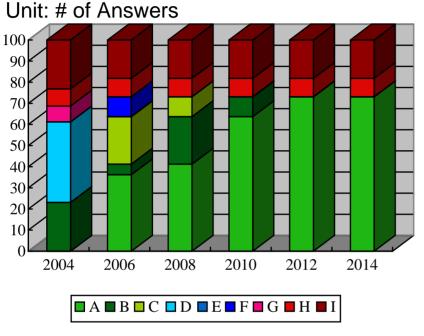


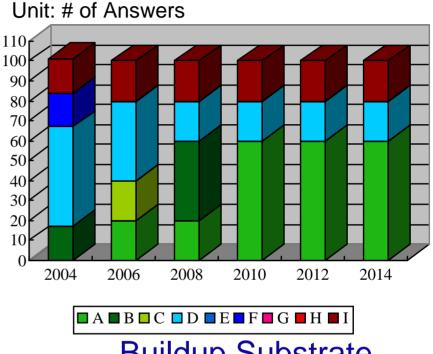
Embedded Active Devices in Buildup

Unit: # of Answers


Buildup Mother Board Embedded

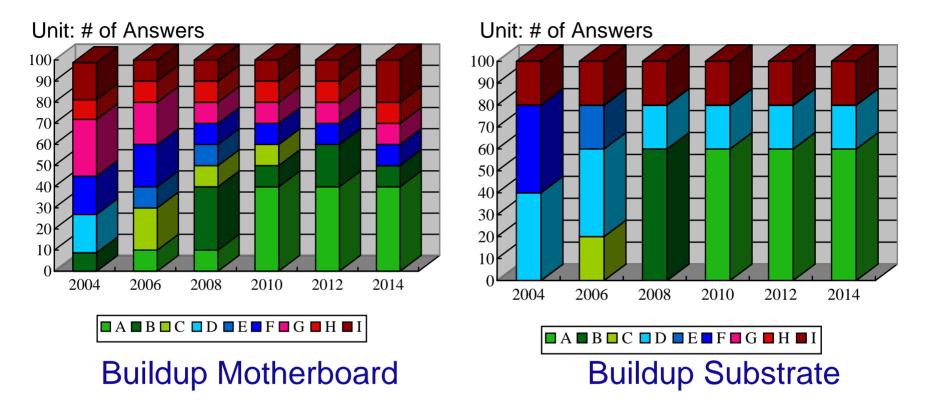
Buildup Substrate Embedded


Embedded Chip Resistor to Buildup

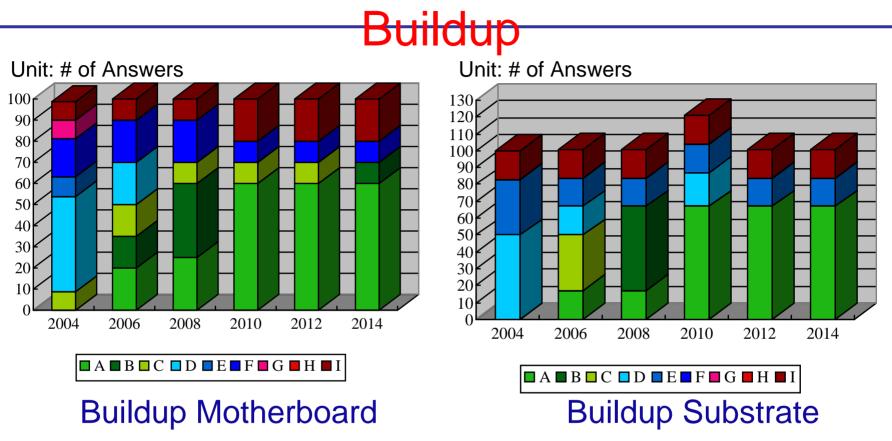


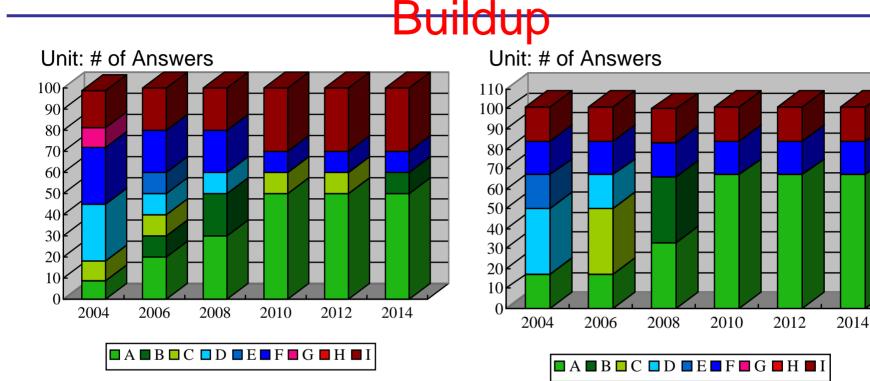
Embedded Chip Capacitor to Buildup

Buildup Motherboard



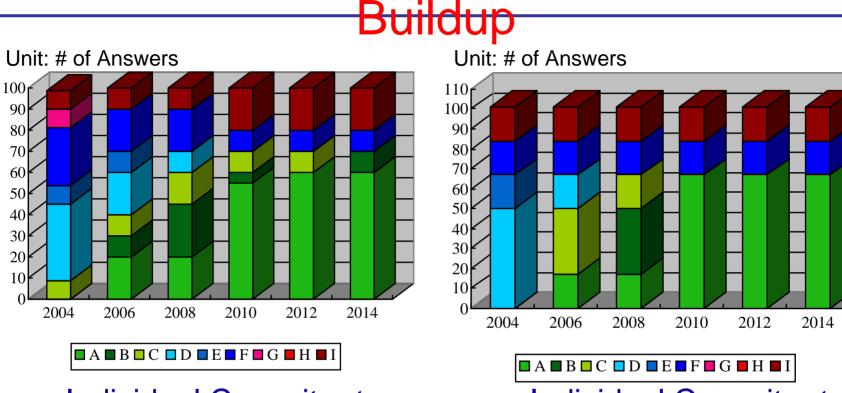
Buildup Substrate


Embedded Chip Inductor to Buildup


Embedded Formed Resistor to

Embedded Formed Capacitor to

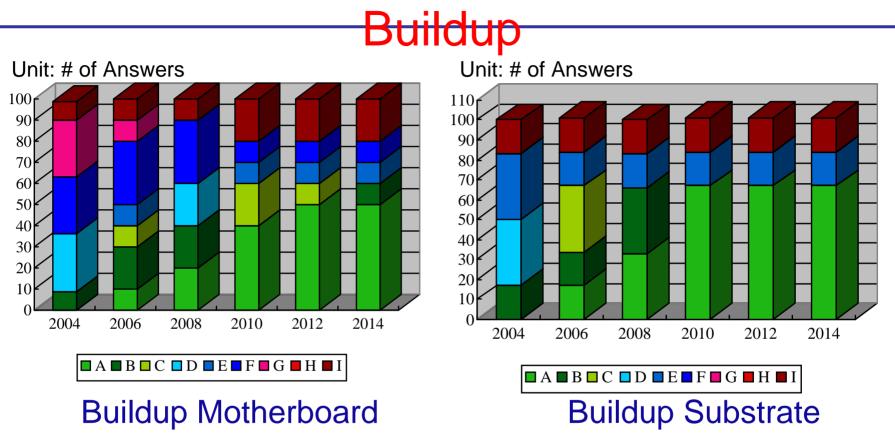
Distributed Capacitor to Buildup Motherboard


Distributed Capacitor to

Buildup Substrate

Embedded Formed Capacitor to

Individual Capacitor to Buildup Motherboard


Individual Capacitor to

Buildup Substrate

Embedded Formed Inductor to

Challenges on PWBs

- 1. Limitation of Fine Line/Space Width
 - Conventional Technology Limitation at <20micron Line/Space and Via Hole Diameter
 - Increasing Additive Process and/or Semiconductor-like Process Requirements
- 2. Adoption for Signal Integrity
 - Shortage of Electronics Engineer in PWB Industry
 - Increasing Capital Investment for Embedded Components PWB
 - Modeling & Simulation are necessary for Embedded Components and SiP
 - Design for Manufacturing & Design for Test needs to establish
- 3. Adoption for Interconnection Reliability
 - Modeling & Simulation for Total Package Structure, especially for Low k & Cu Device
 - Improved Insulation material to adopt Reliability as well as Signal Integrity
 - Integration into Packaging Substrate to release Mother board density & Cost

Summary

- PWB products began to differentiate in 2 categories by the correspondence to complexity such as SiP, EAD and cost oriented type
 - Buildup Motherboard, FPC and packaging substrate is growing area
 - Conventional Motherboard production shift from Japan to Asian countries
- SiP can get a market opportunity early, and can save plant investment
- An active component embedded printed wiring board has the potential solution which improves the function of the unit area of SiP
- Failure at a design stage of the embedded component PWB isn't forgiven. Therefore, the maintenance of the design database and the maintenance of the modeling & simulation environment are necessary.
- Infrastructural enhancement of materials, manufacturing technologies, quality assurance and patent corresponding to High speed Mother board, SiP and the components embedded PWB are necessary.

Thank You Very Much!!

- Thank you very much for your attention
- Japan Jisso Technology Roadmap 2005 Edition will publish in June, 2005. Please Wait!!

