

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Current and Emerging Gaps in Standards for Semiconductor Assembly Materials in the Era of 2.5D and 3D Dimensional Devices

NEW IDEAS ... FOR NEW HORIZONS

Andy C. Mackie, PhD Senior Product Manager Semiconductor Assembly Materials

NEW IDEAS ... FOR NEW HORIZONS

MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Overview

- Flux usage
 - Standard flip-chip, 2.5D and 3D assembly
- CTF parameters for fluxes
 - "Critical to functionality"
- Review of standards
 - Relevant to semiconductor-grade fluxes
- Conclusions
 - Path forward

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

• Flux usage

- CTF parameters for fluxes
- Review of standards
- Conclusions

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Flip-Chip Fluxes in Semiconductor Assembly

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Semiconductor-Grade Fluxes

Material Type	Flux Deposition Method	Final Device type	Observables for "Good" Process	Residue Compatibility (NC flux only)	
Waferbumping fluxes	Spin-on after dispense	Bumped die	Shiny, smooth hemispherical, co- planar solder bumps. No solder on die or substrate surface.		
Flip-Chip fluxes	Spray / jet of flux onto substrate	Assembled FC	Reliable, void-free solder joint	No failures related to electrical conductivity between solder joints. Compatibility with	
	Dipping flip-chip (bumped die) into open tray of flux	device			
WLCSP fluxes	Printing of flux onto wafer surface (UBM pads / RDL)	WLCSP	Shiny, hemispherical solder spheres. High shear strength solder joints.	underfill materials, with no delam during stress testing. No voiding.	
Ball-Attach fluxes	Pin transfer from reservoir (tray) onto substrate	BGA or micro-BGA	Shiny, hemispherical solder spheres. No staining on substrate surface. High shear strength solder joints.		
NOTES:	Sometimes both processes are used				

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

• Flux usage

CTF parameters for fluxes

Review of standards

NEW IDEAS ... FOR NEW HORIZONS

Conclusions

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

CTF Parameters for Flip-Chip Flux

- Rheology
 - Application
 - Dipping or spraying/jetting
 - Tack
 - Hold die during reflow
- Electrical reliability
 - SIR / ECM
- Physical reliability
 - No delam / voiding
 - Good adhesion
- Halogen-levels
 - Driven by "environmental" or failure modes?
- Solderability
 - SnAg wetting onto RDL/PI metallizations

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Rheology: Measurement

- Geometries:
 - "Uncontrolled" geometries
 - T-bar
 - Stand-alone spindles
 - Somewhat-controlled geometries
 - Parallel plate
 - Archimedes screw
 - Controlled geometries
 - Cone and plate
 - Concentric cylinder

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Electrical Reliability: No-Clean HF Fluxes

"There is no such thing as a no-clean material; there are only no-clean processes." - Dave Hillman (Rockwell Collins), 1999

NEW IDEAS ... FOR NEW HORIZONS

MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Electrical and Physical Reliability: Flux Compatibility

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

HFR* / Halogens / Halide Standards

Standard	Pass/Fail Criteria	Materials Concerned	Comments	
	Br < 0.09wt% (900 ppm) and Cl <	Printed circuit boards		
JPCA-ES-01-1999	0.09wt% (900 ppm)	(PCB/PWB)	Not Fluxes	
	900 ppm maximum Cl and 900	Printed circuit boards		
IEC 61249-2-21	ppm maximum Br 1500 ppm	(PCB/PWB)	Not Fluxes	
	900 ppm maximum Cl and 900	Printed circuit boards		
IPC-4101B	ppm maximum BR 1500 ppm	(PCB/PWB)	Not Fluxes	
			Cl- and Br- ions only: not	
J-STD-004B	<500 ppm total halide	Fluxes and solder pastes	covalent halogens	
			Materials not appearing in	
		Materials in the final	the final assembly (volatile or	
JEDEC J-STD-709A	<1000 ppm Cl and < 1000 ppm Br	electronics assembly only	washed off) don't count	
			"Halogen-free" is not truly	
JEITA ET-7304A	<1000 ppm Cl and < 1000 ppm Br	Solder Fluxes and Solder Pastes	halogen-free	
	R ₁ Covalent Halogens			
	weight]	Halogen-containing compounds	$R_2 - C Br Br C $	
		Halogenated fire retardants Possible Activator	$\begin{array}{c c} R_1 & R_3 & (F_2) \\ R_2 & C & F \\ R_3 & R_2 & C & (At) & (C) O \\ R_3 & R_2 & C & (At) & (C) O \\ \end{array}$	

Chemistries

 $\begin{array}{c}
R_1 \\
R_2 - C \\
R_3
\end{array}$

*HFR = Halogenated fire - retardants

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

• Flux usage

CTF parameters for fluxes

Review of standards

NEW IDEAS ... FOR NEW HORIZONS

Conclusions

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Relevant Global Standards Organizations

NEW IDEAS ... FOR NEW HORIZONS

Semiconductor-Grade Fluxes:

- SEMI:
 - Molding compounds
 - Leadframes
 - Chemicals
- JEDEC:
 - Reliability test methods
 - Shear strength

Nothing of relevance

- IPC:
 - J-STD-004B

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

ANSI/IPC J-STD-004B

Appendix A: Example Qualification Test Report			
Classification Tests	Status	SMT Flux Types**	Relevance to Semiconductor Grade (SG) NC Fluxes
Copper mirror	Required	Liquid and pasty fluxes	Probably relevant, but what is allowable level?
			Relevant to various failure mechanisms. What level is
Quantitative Halides	Required	Liquid and pasty fluxes	allowable?
Corrosion	Required	Liquid and pasty fluxes	Probably relevant, but what is allowable level?
			Highly relevant, but dependent on many factors:
SIR	Required	Liquid and pasty fluxes	profile, underfill type
			Highly relevant, but CTF is dependent on many
ECM	Required	Liquid and pasty fluxes	factors: pitch, voltage, profile, underfill type
Characterization Tests			
Acid value	Required	Liquid and pasty fluxes	Proxy for "activity" level, but not specific
Specific gravity	Required	Liquid fluxes only	Feel-good but not relevant
Viscosity	Required	Pasty fluxes only	CTF for most SG fluxes. Tack is also often critical.
			Probably relevant as a gross check of
Visual	Required	Liquid and pasty fluxes	process/variations, but how to quantify?
			Varies with reflow profile and many other factors.
Solids content	Required	Liquid and pasty fluxes	Important for NC fluxes
Other Tests			
Qualitative halide (silver chromate)	Optional: SMT Flux	Liquid and pasty fluxes	Irrelevant and insensitive
Qualitative halide (fluoride spot)	Optional: SMT Flux	Liquid and pasty fluxes	Irrelevant and insensitive
SIR (IEC 61189-5)	Optional: SMT Flux	Liquid and pasty fluxes	Choose one standard for electrical reliability
SIR (Bellcore GR-78-CORE)	Optional: SMT Flux	Liquid and pasty fluxes	Choose one standard for electrical reliability
SIR (ISO9455-17)	Optional: SMT Flux	Liquid and pasty fluxes	Choose one standard for electrical reliability
Fungus	Optional: SMT Flux	Liquid and pasty fluxes	Questionable relevance
Halogen (EN 14582)	Required	Liquid and pasty fluxes	Relevant for NC fluxes
			Proxy for "solderability" level, but direct correlation
Wetting balance	Optional: SMT Flux	Liquid and pasty fluxes	to CTF in doubt
			Highly relevant proxy for many SG flux usages, but will
Spread test	Optional: SMT Flux	Liquid and pasty fluxes	vary with metallization, profile etc.
			Critical for many fluxes (WS and NC). J-STD-005 test is
Tack (extensional viscosity)	NONE	NONE	insensitive and of questionable reference
Adhesion	NONE	NONE	Shear and pull strength against all adjacent polymers
Particulate levels	NONE	NONE	Increasingly important for <100micron pitch devices

"1.2 Purpose: The purpose of this standard is to classify... flux materials... for use in... interconnections for printed circuit board assembly."

**"Liquid" (wavesoldering) and "Pasty (tacky)" fluxes (rework) are closest to semiconductor grade fluxes

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Field Strength in SIR/ECM

		ANSI/IPC J-STD-004B		
		SIR	EM	
Field Strength	Bias	0.010	0.031	
(V/micron)	Measurement	0.010	0.157	
	T/%RH	40C / 90%RH	65C / 85%RH	

Field strength = PD/d

	PD(V) =	5	2	1	0.5
Distance between adjacent conductors (d) /microns	200	0.025	0.010	0.005	0.003
	175	0.029	0.011	0.006	0.003
	150	0.033	0.013	0.007	0.003
	125	0.040	0.016	0.008	0.004
	100	0.050	0.020	0.010	0.005
	80	0.063	0.025	0.013	0.006
	60	0.083	0.033	0.017	0.008
	50	0.100	0.040	0.020	0.010
	20	0.250	0.100	0.050	0.025
	10	0.500	0.200	0.100	0.050
	Lower than IPC SIR and EM (Test)				Test)
	KEY:	Lower than IPC EM (Test)			
		Higher than IPC SIR and EM (Test)			

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Conclusions

 Fluxes are showing excellent extensibility of usage, even in the age of 2.5D/3D "dimensional devices"

NEW IDEAS ... FOR NEW HORIZONS

- Semiconductor-grade fluxes are beyond the scope of the ANSI/IPC J-STD-004B
 - Current flux testing methods are inadequate and show poor correlation to CTF parameters (and their proxies) for such fluxes
- Drivers for "halogen-free" in semiconductor assembly are very different from "green" concerns
- SIR/EM and physical adhesion testing must be relevant to flux and underfill compatibility
 - Large, low clearance, ultrafine pitch (high I/O count) die: forcing condition for reliability

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Thank you

Acknowledgements:

- Eric Bastow
- Mike McNamara
- Steve Foster

ChipScaleReview.com

Dieing 101: LEDS, Laser, MEMS
Trends Driving WLP and 3D
Direct Copper Bonding for High Densily Applications
Electroless Plating for Improved Test
Solder in the Age of 3D
International Directory of Solder and Flux Suppliers

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

APPENDIX

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

What is "Zero"?

"Below the"

- Limit of detection (LOD)
 - Function of noise in instrumentation
- Method detection limit (MDL)
 - Function of:
 - Noise in instrumentation
 - Errors in sample preparation methodology
- Limit of quantitation (LOQ)
 - Function of all above
- Practical limit of quantitation (PQL)
 - 5x MDL
 - May be as high as 250ppm

- Materials testing and standards:
 - Level playing field for business
 - Provide assurance to customers
 - Cover CTF (or CTF proxies) for properties of materials
 - A "Good Standard"**
 - Can be included in a contract
 - Is clearly written
 - Sets out requirements as metrics (quantifiable)
 - Addresses quality and reliability