

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

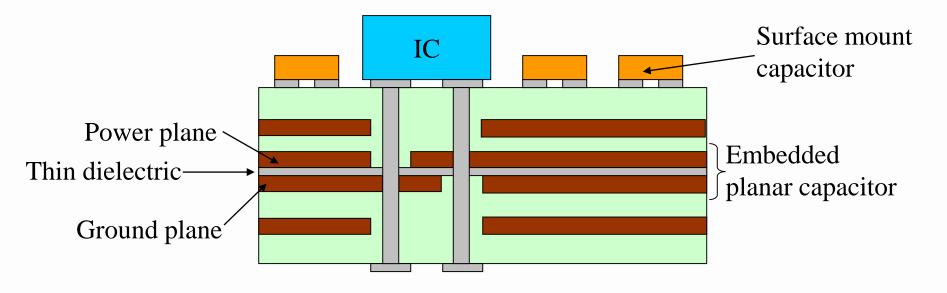
Reliability of Embedded Planar Capacitors: A Review

NEW IDEAS ... FOR NEW HORIZONS

Michael H. Azarian, Ph. D.

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

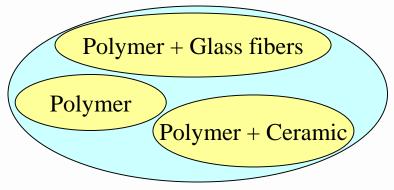
Outline


Introduction

- Overview of Reliability Studies
- Conduction Mechanism
- Conclusions

NEW IDEAS ... FOR NEW HORIZONS LASV Embedded Planar Capacitors

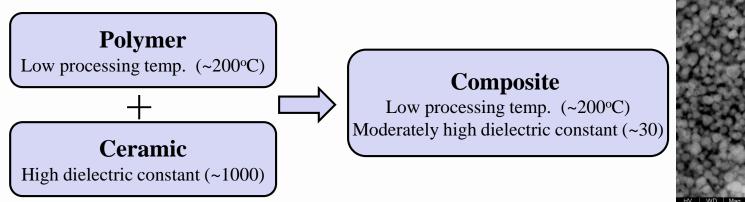
- Embedded planar capacitors are thin laminates embedded inside a PWB that serve both as a power/ground plane and as a parallel plate capacitor.
- These laminates extend throughout the board and consist of a thin dielectric (8-50 µm), sandwiched between two copper layers.
- Their low parasitic inductance makes them effective replacements for discrete local decoupling capacitors that function at high frequency.

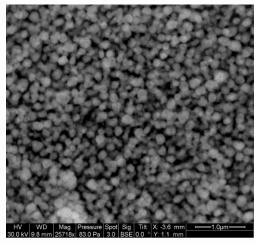


NEW IDEAS ... FOR NEW HORIZONS Dielectric Materials

- The dielectric material in a planar embedded capacitor can be:
 - Polymer (such as epoxy or polyimide)
 - Polymer reinforced with glass fibers (to provide mechanical strength).
 - Polymer filled with high dielectric constant ceramic

- The dielectric constant of pure polymer or polymer reinforced with glass fibers is low (typically <5).
- Polymer ceramic composite (polymer filled with ceramic powder) is one of the most promising materials for embedded capacitors due to its higher dielectric constant.


MARCH 25-27, 2014 MANDALAY BAY RESORT AND


CONVENTION CENTER LAS VEGAS, NEVADA

Why Polymer-Ceramic Nanocomposites?

NEW IDEAS ... FOR NEW HORIZONS

 Pure ceramic dielectrics are brittle and require processing temperatures (~1100°C) that are much higher than the processing temperature of typical PWB manufacturing process (~300°C).

- The polymer typically used is epoxy.
- The ceramic widely used is Barium Titanate (BaTiO₃) whose dielectric constant (ε) can be as high as 15,000 in the crystalline phase.

The effective dielectric constant (ε_c) of the composite can be increased by increasing the ceramic loading (up to 50-60% by Vol.)

NEW IDEAS ... FOR NEW HORIZONS Outline

- Introduction to Embedded Capacitors
- Overview of Reliability Studies
- Conduction Mechanism
- Conclusions

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Reliability of Embedded Planar Capacitors

- Failure of an embedded capacitor can lead to board failure since these capacitors are not reworkable.
- Change in electrical parameters of an embedded capacitor, such as:

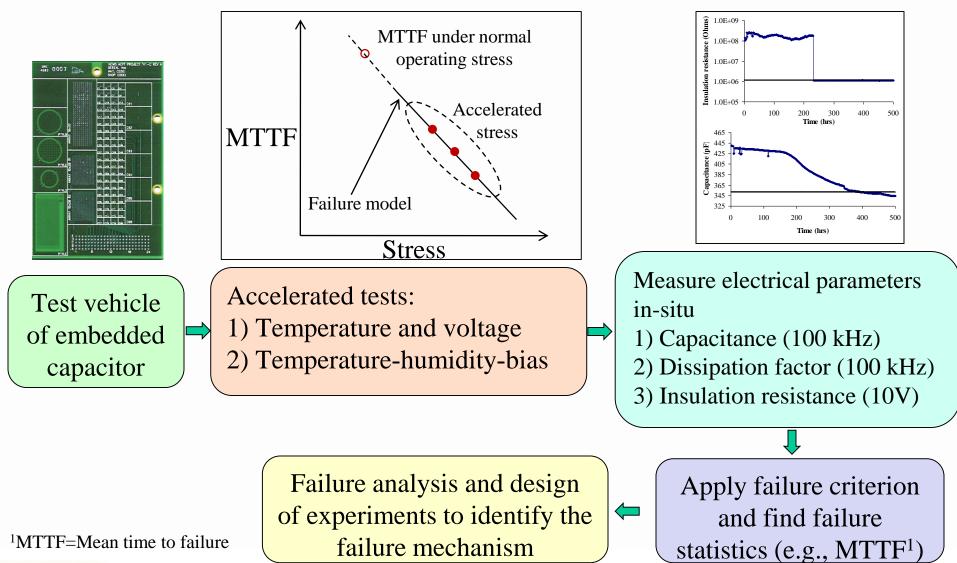
NEW IDEAS ... FOR NEW HORIZONS

- capacitance (C),
- dissipation factor (DF), and
- insulation resistance (IR),

can affect a circuit connected to these capacitors.

Motivation for CALCE Research on Embedded Planar Capacitors

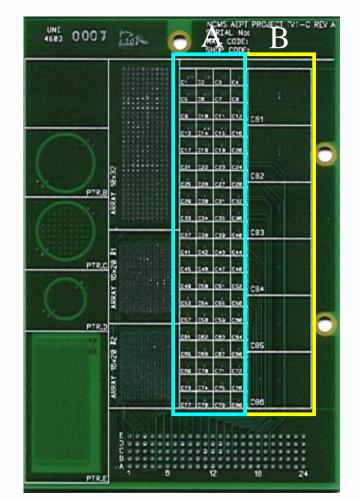
NEW IDEAS ... FOR NEW HORIZONS


- Adoption of embedded planar capacitors would be encouraged by availability of
 - failure models;
 - long term reliability data; and
 - insights into failure mechanisms
 (e.g., the mechanism of leakage current).

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

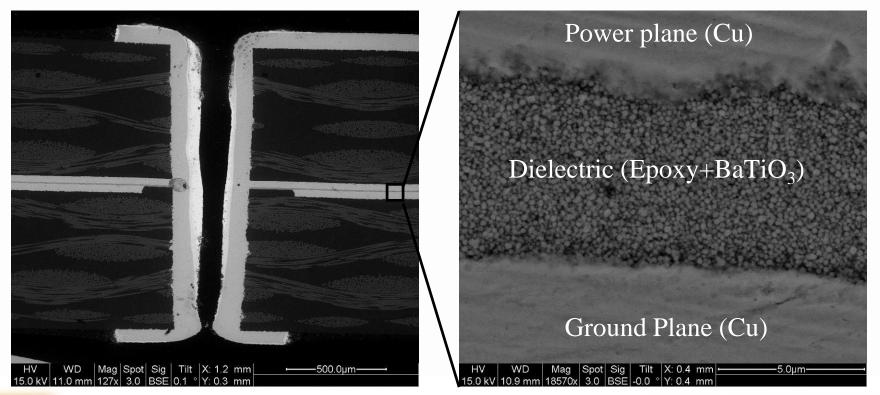
CALCE's Reliability Testing of Embedded Capacitors



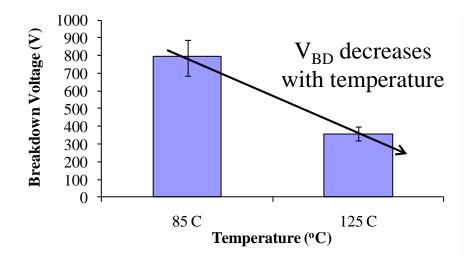
Test Vehicle

NEW IDEAS ... FOR NEW HORIZONS

- The *test vehicle* was a 4-layered PWB in which a commercially available planar capacitor laminate formed layer 2 and layer 3.
- The *power plane was etched* at various locations to form individual capacitors and the ground plane was continuous.
- *Two sizes* of capacitor were investigated:
 - Group A (small): 0.026 in², 400 pF; 80 capacitors/test vehicle
 - Group B (large): 0.19 in², 5 nF;
 6 capacitors/test vehicle.
- The *failure criteria* used were:
 - 20% decrease in capacitance (C)
 - increase in dissipation factor (DF) by a factor of 2
 - drop in insulation resistance (IR) to approximately 1.1 MOhms.



Sectional View of an Embedded Capacitor

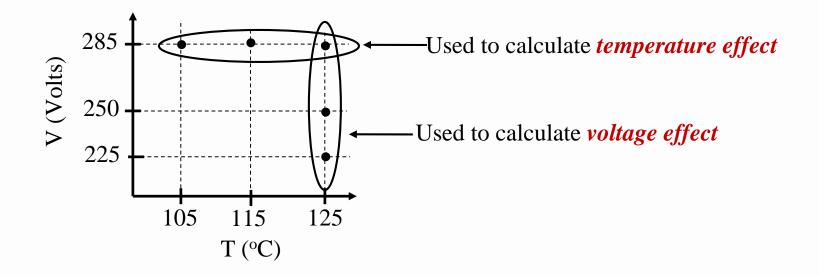

NEW IDEAS ... FOR NEW HORIZONS

- Each capacitor had its power plane connected to a PTH and the ground plane was common for all capacitors.
- The dielectric (8 μ m thick) was a composite of BaTiO₃ of 250 nm mean diameter loaded to 45% by volume in epoxy.

- Maximum temperature (T_{max}) and voltage (V_{max}) were selected such that:
 - $T_{max} < 130^{\circ}C$ (maximum operating temperature of the PWB).
 - V_{max} < V_{BD} (breakdown voltage at that temperature).

Measurement of breakdown voltage (V_{BD}) on 10 small capacitors

• The reduction in the breakdown voltage with temperature can be explained by an increase in free volume of the polymer matrix.


MARCH 25-27, 20 MANDALAY BAY RESORT A

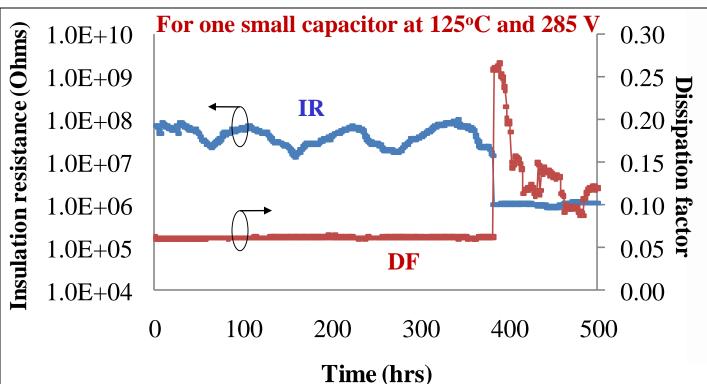
LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Design of Experiments for Lifetime Modeling

• Failure terminated highly accelerated life tests (HALT) were conducted at multiple stress levels.

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA


Avalanche breakdown of

the dielectric

Failure Modes Observed During Lifetime Testing

NEW IDEAS ... FOR NEW HORIZONS

- The failure modes observed were:
 - Sudden decrease in insulation resistance
 - Sudden increase in dissipation factor
 - Gradual drop in capacitance
- There was no trend in the values of IR or DF before failure.

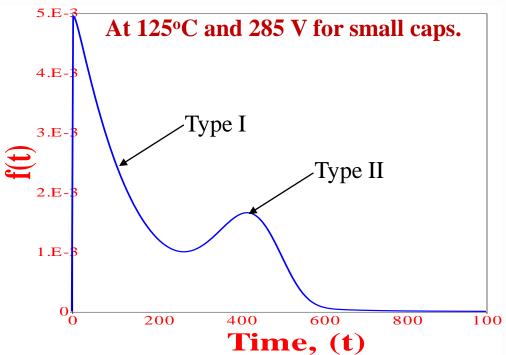
NEW IDEAS ... FOR NEW HORIZONS LAS VEGA Effect of Temperature and Voltage on IR

Prokopowicz¹ proposed a model that is used in accelerated life testing of multilayer ceramic capacitors (MLCCs) to describe IR failures.

The values of n and E_a for BaTiO₃ in MLCCs can be found in the literature

The values of n and E_a for epoxy-BaTiO₃ composite had not been documented

where t is the time-to-failure, V is the voltage, n is the voltage exponent, E_a is the activation energy, k is the Boltzmann constant, T is the temperature, and the subscripts 1 and 2 refer to the two aging conditions.


The applicability of this model for an epoxy- $BaTiO_3$ composite dielectric had not previously been established.

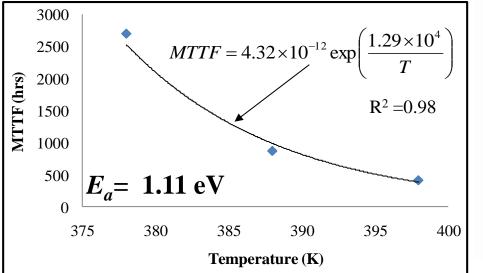
¹T. Prokopowicz and A. Vaskas, Final Report, ECOM-90705-F, pp. 175, NTIS AD-864068, 1969.

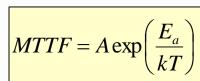
 $\frac{\mathbf{t}_1}{\mathbf{t}_2} = \left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^n \exp\left(\frac{\mathbf{E}_a}{\mathbf{k}}\left(\frac{1}{\mathbf{T}_1} - \frac{1}{\mathbf{T}_2}\right)\right)$

APEX EXPO NEW IDEAS ... FOR NEW HORIZONS Lifetime Modeling of Avalanche Breakdown Failures

- At all stress levels, the time-to-failure was observed to follow a **bimodal distribution**:
 - A mixed Weibull with 2 subpopulation was used to calculate the mean time to failure (MTTF).

- A shorter time-to-failure (all Type I) of large capacitors implies that their failures were defect driven, whose probability increases with capacitor area.
- Statistical analysis was not performed on large capacitors due to small sample size (4).

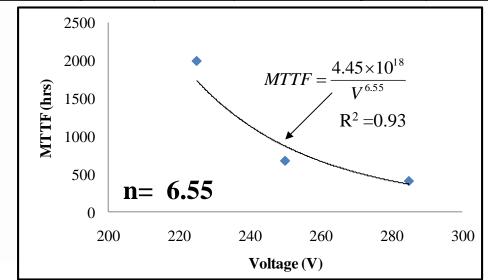


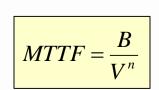

Activation Energy (E_a) of the Prokopowicz Model

NEW IDEAS ... FOR NEW HORIZONS

Type I failures seem to be **random** ($\beta \sim 1$) and Type II represent a **wear-out** mechanism ($\beta > 1$) so only Type II failures were modeled.

	Type I (Random failures)			Type II (Wear-out failures)		
	β	η	MTTF (hrs)	β	η	MTTF (hrs)
125°C and 285V	1.0	130	130	6.0	444	413
115°C and 285V	1.1	65	63	1.8	979	871
105°C and 285V	1.6	267	238	4.9	2937	2702



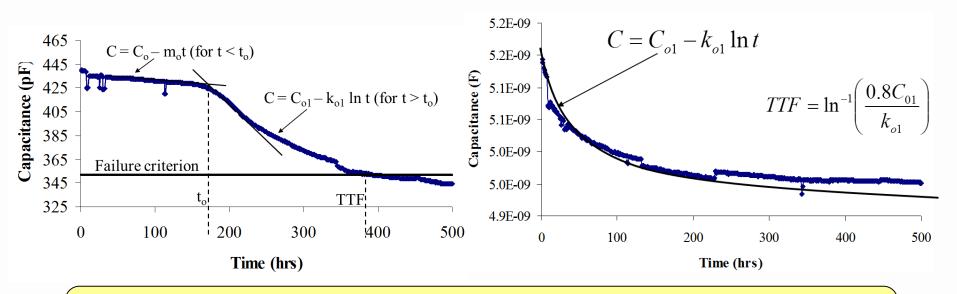

Voltage Exponent (n) of the Prokopowicz Model

NEW IDEAS ... FOR NEW HORIZONS

Type I failures seem to be **random** ($\beta \sim 1$) and Type II represent a **wear-out** mechanism ($\beta > 1$) so only Type II failures are modeled.

	Mode I (Random failures)			Mode II (Wear-out failures)		
	β	η	MTTF (hrs)	β	η	MTTF (hrs)
125°C and 285V	1.0	130	130	6.0	444	413
125°C and 250V	1.4	188	171	5.5	739	680
125°C and 225V	1.0	935	935	22.3	2058	1996

MARCH 25-27, 2014 MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS. NEVADA


NEW IDEAS ... FOR NEW HORIZONS LAS Gradual Decrease in Capacitance

(Plot of Capacitance at 125°C and 285 V for Group B Capacitor)

- In small capacitors (group A) the onset of logarithmic degradation was delayed by a time which is referred to as t_o .
- The linear degradation region was absent in group B (large) capacitors.

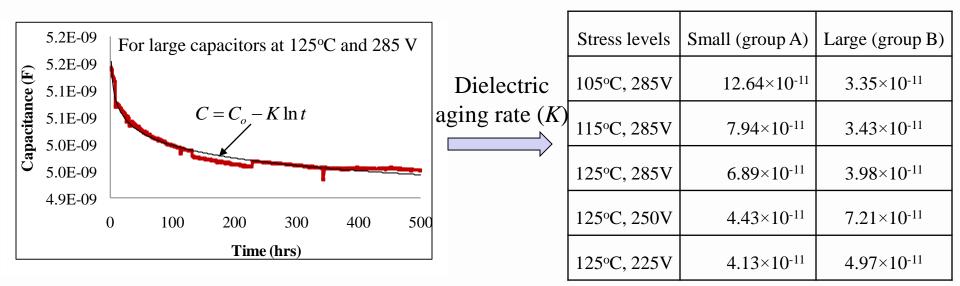
Group A (small)

Group B (large)

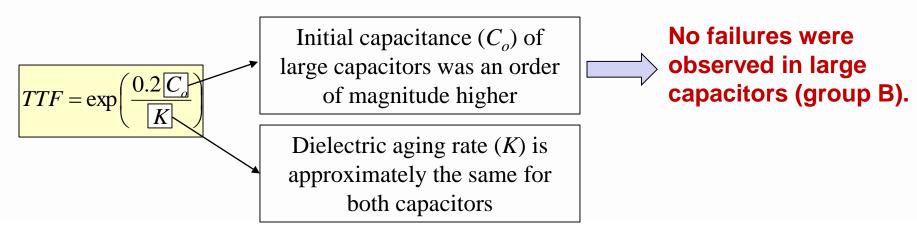
Failures were not observed in group B (large) capacitors due to a large value of initial capacitance (C_{ol}) as compared to group A.

NEW IDEAS ... FOR NEW HORIZONS LAS VED **Effects of Temperature on Capacitance**

An increase in plate spacing as a result of thermo-mechanical stress generated due to CTE mismatch Decrease in the dielectric constant: •Aging in BaTiO₃ •Residual stress relaxation in polymer


 $C = C_o - k \ln t$ \Rightarrow Aging model

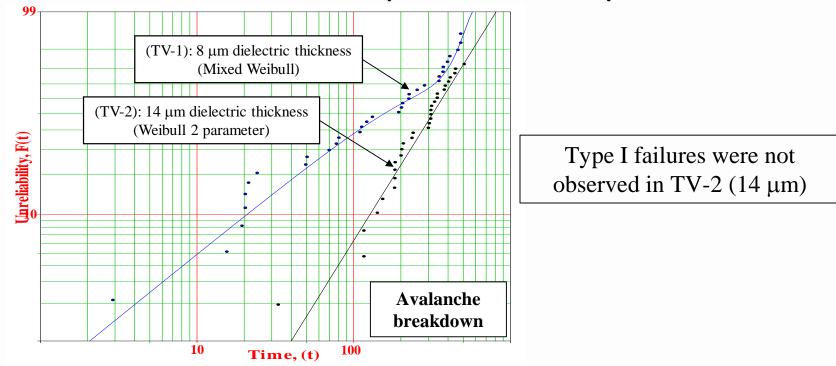
where C is the capacitance at time t, C_o is the initial capacitance, k is the capacitance degradation rate, and t is time.



NEW IDEAS ... FOR NEW HORIZONS

Modeling the Decrease in Capacitance During HALT

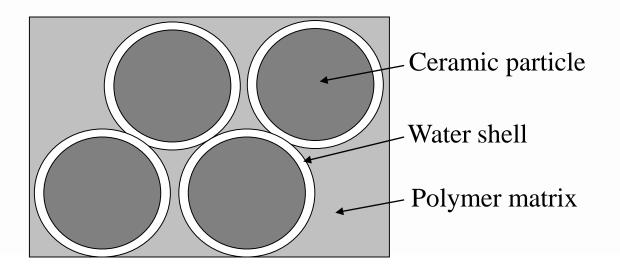
- Time-to-failure as a result of 20% decrease:



MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

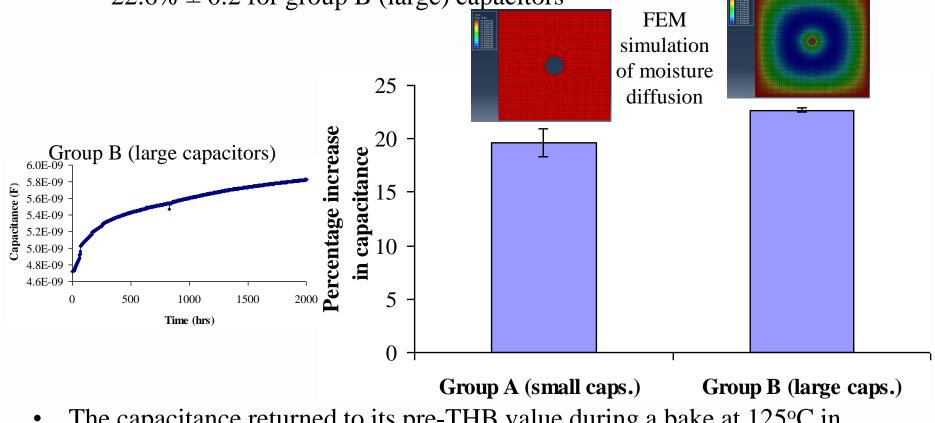
Thickness Effect: 8 μm versus 14 μm


	Avalanche breakdown at 125°C and 285 V						Decrease in
	Туре І				Туј	capacitance	
	β	η	MTTF (hrs)	β	η	MTTF (hrs)	K
TV-1 (8 μm)	1.0	130	130	6.0	444	413	6.89×10 ⁻¹¹
TV-2 (14 μm)				2.0	383	341	4.52×10 ⁻¹¹

NEW IDEAS ... FOR NEW HORIZONS

Effect of Humidity

- Under humid conditions, the *capacitance and DF were found to increase* due to moisture absorption in the dielectric (since $\varepsilon_{water} > \varepsilon_{air}$, where ε is the dielectric constant).
- The primary site of absorbed moisture in these composites is the *interface* between the ceramic and the polymer matrix.
- The level of moisture absorbed in these composites increases with a decrease in the ceramic particle size or an increase in the ceramic loading, both of which increase the interfacial area.



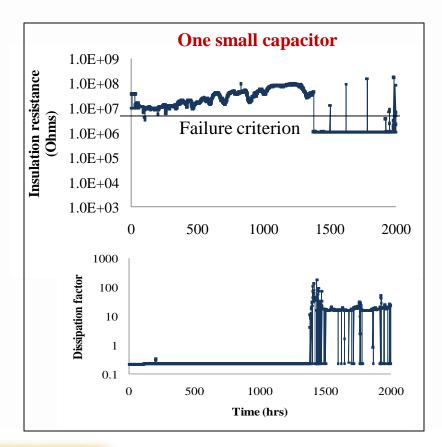
MARCH 25-27, 2014 MANDALAY BAY RESORT AND

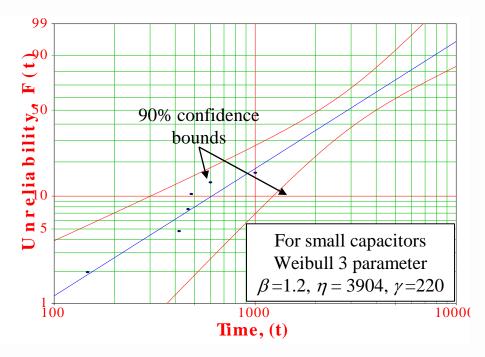
CONVENTION CENTER

NEW IDEAS ... FOR NEW HORIZONS LAS V Percentage Increase in Capacitance

- The increase in capacitance at 85°C, 85% RH and 0 V after 2000 hrs was
 - $-19.6\% \pm 1.3$ for group A (small) capacitors
 - $-22.6\% \pm 0.2$ for group B (large) capacitors

• The capacitance returned to its pre-THB value during a bake at 125°C in about 20 hrs.




Results of Temperature-Humidity-Bias (THB) Tests (85°C, 85% RH, and 5 V)

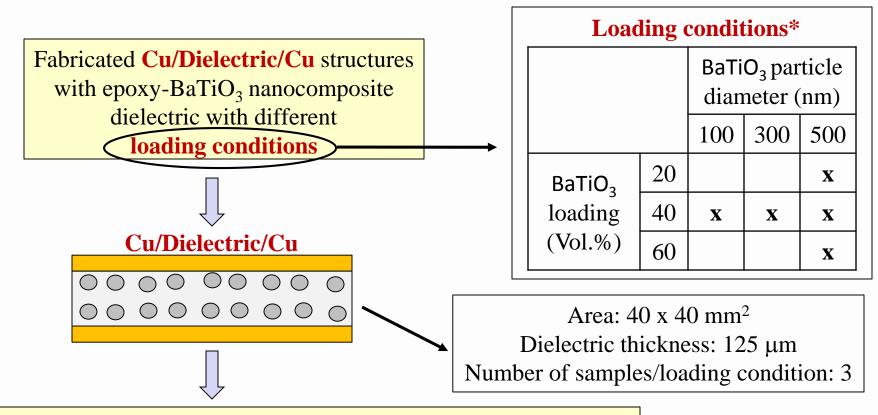
IR failures as a result of formation of a conduction path were observed :

NEW IDEAS ... FOR NEW HORIZONS

- 6/36 small capacitors and 2/4 large capacitors failed by this mode.

All failures as a result of formation of a conduction path disappeared after baking at 125°C for several days.

NEW IDEAS ... FOR NEW HORIZONS Outline


- Introduction to Embedded Capacitors
- Overview of Reliability Studies
- Conduction Mechanism
- Conclusions

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

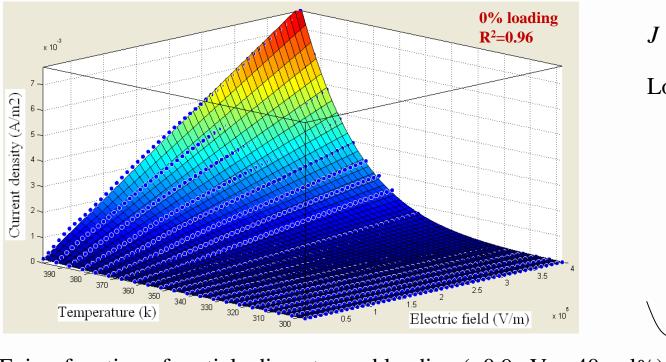
NEW IDEAS ... FOR NEW HORIZONS

Approach

Measured the following parameters:

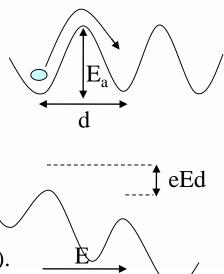
- 1. Capacitance and dissipation factor (as a function of Temperature)
- 2. Leakage current (as a function of Temperature and Voltage)

*Three control samples were also fabricated with 0% loading


NEW IDEAS ... FOR NEW HORIZONS

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

3D Regression of the Leakage Current Data


(To Calculate the Activation Energy of Ionic Hopping)

- 3D regression was performed on the leakage current data.
- The goodness of fit (*R*²) for ionic hopping conduction was greater than 0.90 for all loading conditions, which indicated that hopping was the dominant conduction mechanism (as opposed to Schottky or Poole-Frenkel).

$$J \approx A \left(\frac{E}{T}\right) \exp\left(-\frac{E_a}{kT}\right)$$

Low field approximation

 $E_{\rm a}$ is a function of particle diameter and loading (~0.9 eV, < 40 vol%).

Effects of Particle Loading and Diameter

• The effective dielectric constant was found to increase with the ceramic loading:

NEW IDEAS ... FOR NEW HORIZONS

- The maximum dielectric constant was close to 25 at 60% loading (for 500nm particles).
- The effective dielectric constant was found to decrease when the particle diameter was reduced to 100 nm:
 - this may be due to an increase in the agglomeration of ceramic particles.
- Leakage current was found to increase
 - with an increase in the ceramic loading;
 - with an increase in the particle diameter.
- Leakage current was found to increase with temperature at all voltages (between 1 and 50 V) and loading conditions.

NEW IDEAS ... FOR NEW HORIZONS

Outline

- Introduction to Embedded Capacitors
- Overview of Reliability Studies
- Conduction Mechanism
- Conclusions

MARCH 25-27, 2014 MANDALAY BAY RESORT AND

LAS VEGAS, NEVADA

Conclusions: Temperature and Voltage Aging

- Two failure modes observed:
 - 1. Sharp drop in insulation resistance (*IR*): bimodal

NEW IDEAS ... FOR NEW HORIZONS

- Mechanism: avalanche breakdown
- Type I (infant mortality): **TTF decreased with capacitor area** (defect driven)
- Type I (infant mortality): risk of failures increased for thinner capacitor
- Type II (wear-out): determined failure statistics (Weibull parameters, MTTF)
- Type II (wear-out): Prokopowicz model is applicable

- Values of constants n = 6.5, $E_a = 1.1$ eV; material, not size, dependent

- 2. Gradual decrease in capacitance (C)
 - Mechanism: dielectric aging, plus stress relaxation and electrode separation
 - **TTF increased with capacitor area** (governed by relative changes)
 - Logarithmic aging model is applicable for large area capacitors
 - Smaller capacitors have an initial linear aging trend
 - Aging constant $K = 5 \times 10^{-11}$; material, not size, dependent

Conclusions: Temperature-Humidity (and Bias)

- Temperature-Humidity (no bias):
 - Capacitance and DF both increased with time
 - Mechanism: moisture diffusion/adsorption, leading to increase in dielectric constant

NEW IDEAS ... FOR NEW HORIZONS

- Diffusion constant was calculated for moisture in epoxy-BaTiO₃ nano-composite film: $D \approx 1 \times 10^{-11} \text{ m}^2/\text{s}$
- Reversible after bake-out
- Temperature-Humidity-Bias:
 - The failure mode observed was a sharp drop in *IR*
 - DF also increased suddenly at the same time
 - **Mechanism:** moisture diffusion/adsorption followed by conductive path formation (defect-mediated)
 - Reversible after bake-out

Conclusions: Leakage Current Mechanism

• The leakage current was found to be governed by the **ionic hopping mechanism**

NEW IDEAS ... FOR NEW HORIZONS

- The activation energy for ionic hopping was determined
 - E_a is a function of particle diameter and loading
 - E_a ≈ 0.9 eV, for loadings less than or equal to about 40 vol%
- The leakage current in the dielectric was found to increase
 - with an increase in the ceramic loading
 - with an increase in the particle diameter

Recommended Future Work:

- Further investigate effects of area, thickness, particle loading, and particle diameter
- Assess alternative film constructions and materials
- Investigate the path of leakage current and identify the charge carriers

NEW IDEAS ... FOR NEW HORIZONS

Conclusions: Leakage Current Mechanism

- The leakage current was found to be governed by the **ionic hopping mechanism**
- The activation energy for ionic hopping was determined
 - E_a is a function of particle diameter and loading
 - E_a \approx 0.9 eV, for loadings less than or equal to about 40 vol%
- The leakage current in the dielectric was found to increase
 - with an increase in the ceramic loading
 - with an increase in the particle diameter

Recommended Future Work:

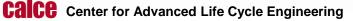
- Further investigate effects of area, thickness, particle loading, and particle diameter
- Assess alternative film constructions and materials
- Investigate the path of leakage current and identify the charge carriers

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Questions?

NEW IDEAS ... FOR NEW HORIZONS

Thank You


Michael H. Azarian, Ph. D.

Center for Advanced Life Cycle Engineering (CALCE)

University of Maryland College Park, MD 20742 USA

mazarian@calce.umd.edu 301-405-7555

