Speaker is an invited presentation A Technical Paper was not required for the 2014 APEXPO[™] Technical Conference

An Experimental Approach to Characterising CAF

Christopher Hunt & Ling Zou NPL (National Physical Laboratory)

MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

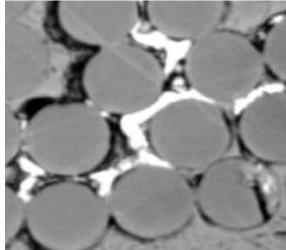
Acknowledgements

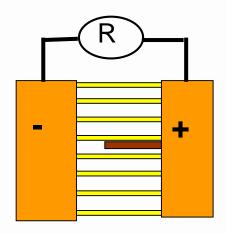
- Aero Engine Controls
- Bosch
- ESA
- GEN3 System
- Graphic

- Isola
- Invotec
- MBDA
- Rolls Royce
- Texas Instruments

• IBM

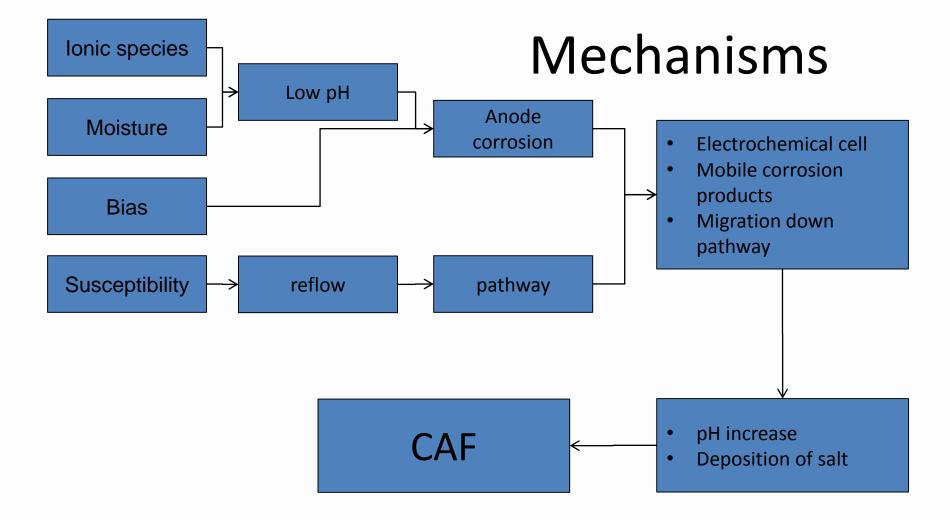
• TRW Auto

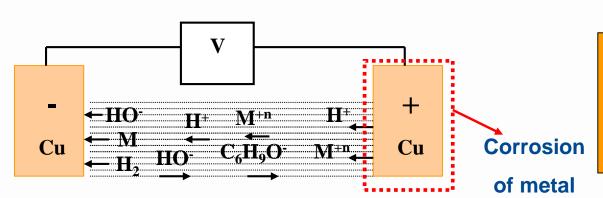

The National Measurement Office of the UK Department for Business, Innovation and Skills

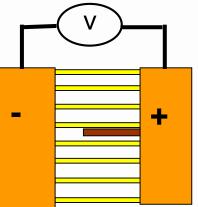


MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Conductive Anode Filament (CAF)


- CAF formation inside the PCB is an important failure mode for circuit assemblies. It is an electrochemical process, and initially caused by corrosion of Cu at the anode.
- CAF is where Cu corrosion products grow along the glass/resin interface from anode to cathode


MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA



MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Electrochemical process for CAF

Cathode

 $Cu^{+n} + ne \rightarrow Cu$ H⁺ + 2e \rightarrow H₂ O₂ + H₂O + 4e \rightarrow 4OH ⁻ Anode

 $Cu \rightarrow Cu^{+n} + ne$ 2H₂O \rightarrow O₂ + H⁺ + 4e

 $\mathbf{Cu^{+2}+2OH}^{-} \rightarrow \mathbf{Cu}(\mathbf{OH})_{2}$

 $Cu (OH)_2 \rightarrow Cu O + H_2O$

CuO: Black $CuCl_2$: Yellow brown $CuSO_4 5H_2O$: Blue

MARCH 25-27, 2014 MANDALAY BAY RESORT AND CONVENTION CENTER

LAS VEGAS. NEVADA

Conditions for CAF formation

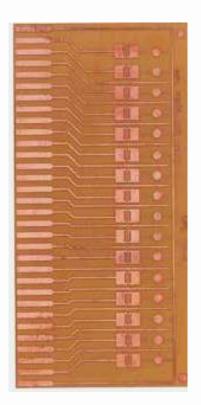
- Electrical charge carriers must be present to form electrochemical cell
 - Ionic species inside PCB, H⁺ and OH⁻ from water
- Water must be present to dissolve the ionic material and sustain them in their mobile ionic state
 - Moisture, humidity
- Acid environment around conductors is needed to initiate Cu corrosion at anode.
 - Ionic contamination from resin, acid residues from plating process
- Pathway is needed for ions to move
 - Delamination between glass fibre and resin, due to reflow
- Bias acts as driving force for ion transport
 - Circuits need to be powered up in service

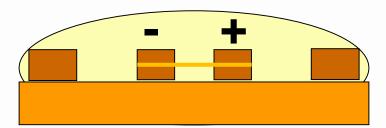
MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

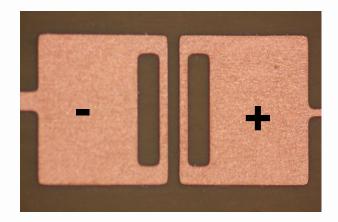
Simulated Test Vehicle (STV)

- Simulated Test Vehicle (STV1) was developed, which provides a controlled way to grow CAF.
- Enables the investigation of different variables separately.

- CAF formation:
 - Different resin systems and glass fibres
 - Reflow process
 - Desmear process: sample drilled
 - Glass bundle size
- CAF can be easily seen using microscope backlight

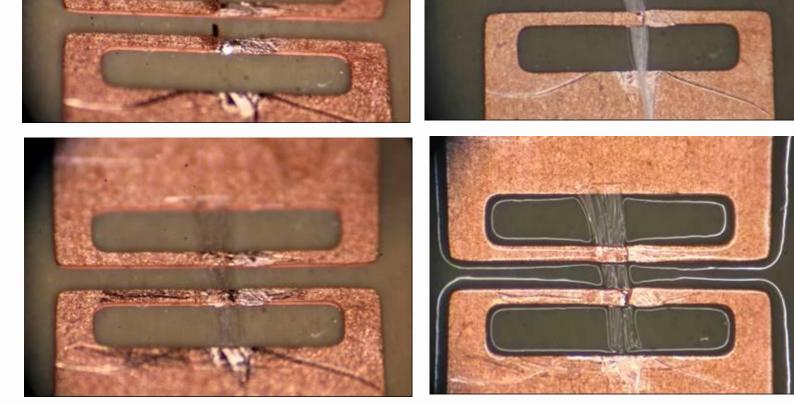





MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

STV sample



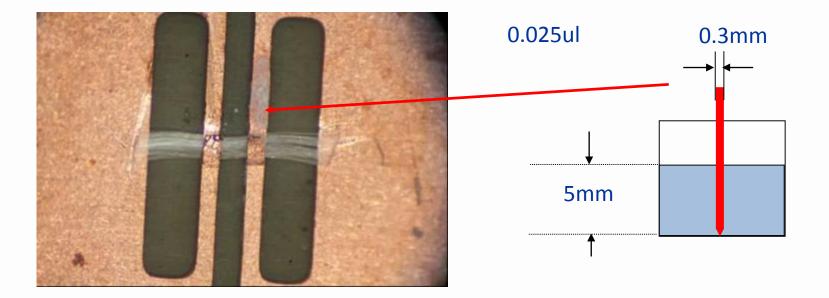
- Polyimide substrate with 2 oz Cu
- Resin powder dissolved in acetone
- Resin cured at 150°C for 60 minute

Test sample preparation

NEW IDEAS ... FOR NEW HORIZONS

MARCH 25-27

AY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA



MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

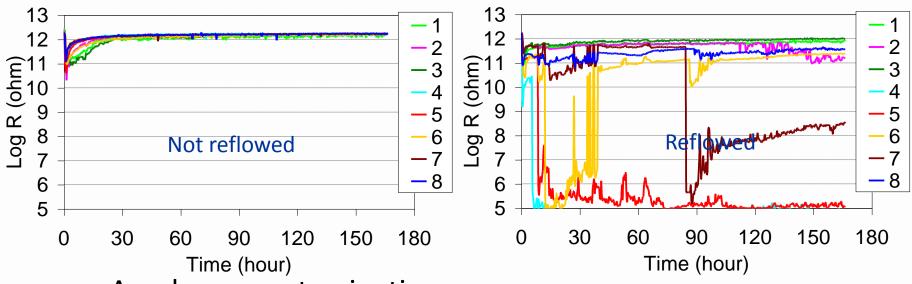
Different variables

- Acid condition at anode (plating solution CuSO₄+H₂SO₄)
- Ionic contamination inside PCB (contaminated fibres)
- Pathway between two conductors (Reflow process)

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Test different resins and glass fibres

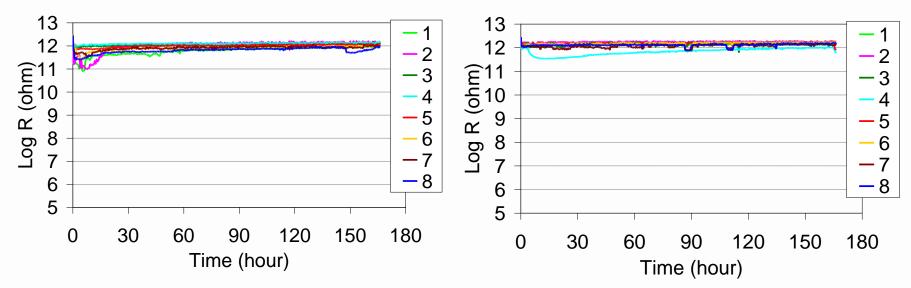

Resin	Glass fibres	Supplier
DICY Cured*	1080 finished	Α
	7628 finished	
Phenolic cured	7628 finished	
	7628 heat cleaned no finish	B
	7628 loom state no finish	
	20μm	

• Anode contamination (on / off)

NEW IDEAS ... FOR NEW HORIZONS

Phenolic cured resin - 7628 heat clean fibre

- Anode: no contamination
- Fibres: clean
- CAF formed on reflowed sample



NEW IDEAS ... FOR NEW HORIZONS

Phenolic cured resin - 1080 finished fibre

- Anode: 100% plating solution
- Fibres: clean
- No CAF formed on both reflowed and no reflowed samples

NEW IDEAS ... FOR NEW HORIZONS

CAF propensity

Anode contamination	Glass fibres	Resin	CAF formation	
			No Reflow	Reflowed
100% plating solution	1080 finish (A)	DICY Cured	×	×
	7628 finish (A)			
	7628 finish (B)			
	7628 heat cleaned		~	
	7628 loom state			
	7628 heat cleaned			×
None	7628 loom state			
	7628 heat cleaned		×	~
	7628 loom state		~	~
	1080 finish (A)	Phenolic cured	×	×
100% plating solution	7628 finish (A)			
	7628 finish (B)			

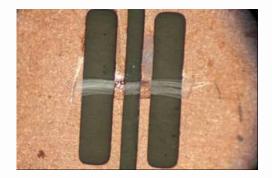
MARCH 25-27 2014 MANDALAY BAY RESORT AND

LAS VEGAS. NEVADA

NEW IDEAS ... FOR NEW HORIZONS

Different resins and glass fibres

- With anode contamination only:
 - There is CAF formation for heat cleaned and loom state fibres with both resins (DICY and phenolic cured).
 - There is no CAF formation for all finished fibres with both resins.


MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Finished glass fibre - DICY resin

Anode	Fibre	Reflow
100% plating solution		✓
20% plating solution	3% NaCl	×
20% plating solution		✓
100% plating solution		×
100% plating solution	1% NaCl	✓
100% plating solution		×
20% plating solution		✓
20% plating solution		×

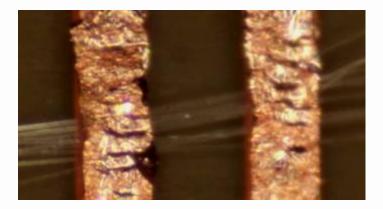
- Anode contamination
- Fibre coated in NaCl
- Reflow & no reflow

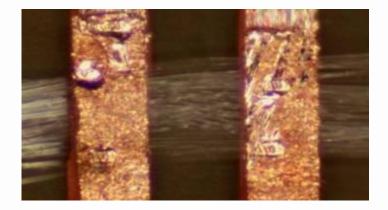
MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Conclusion for finished fibres

Anode	Fibre	Reflow	CAF formation
100% plating solution		✓	√
100% plating solution	3% NaCl	×	×
20% plating solution	570 NaOI	✓	✓
20% plating solution		×	×
100% plating solution		✓	×
100% plating solution	1% NaCl	×	×
20% plating solution		✓	×
20% plating solution		×	×

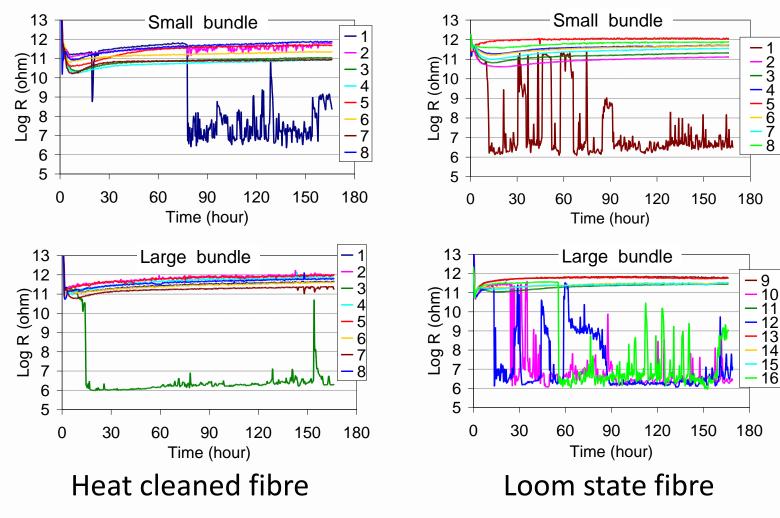

- Three factors must be met for CAF formation
 - Low pH at anode (Plating solution contamination)
 - Ionic contamination inside PCB (NaCl coated fibres)
 - Pathway between two conductors (Reflow process)



MARCH 25-27, 2014

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

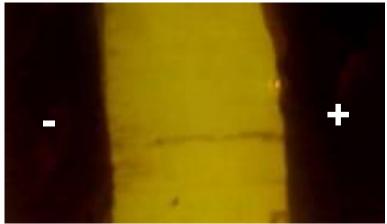
Different glass fibre bundle size

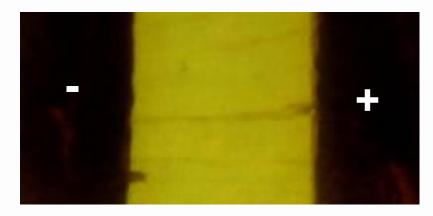


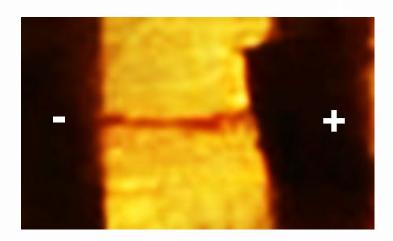
- Phenolic cured resin
- Anode: no contamination
- Fibres: Heat cleaned and loom state glass fibres
- Bundle size: small (~10) & large (30~50)
- Reflowed

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

Phenolic cured resin



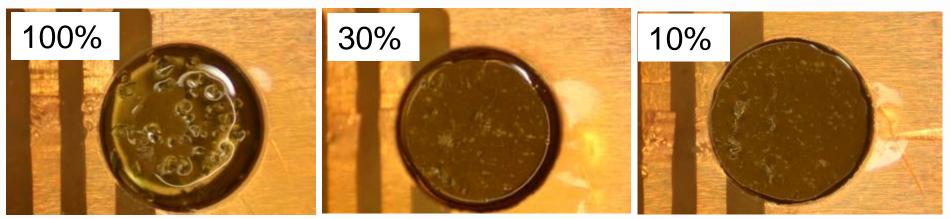



MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

CAF formation

MARCH 25-27, 2014

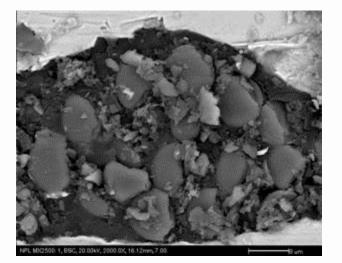
MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

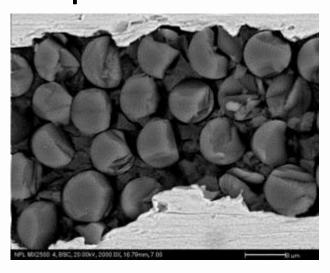

Tape

Cu

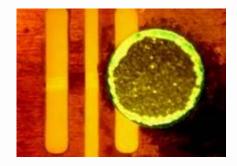
Polyimide

STV with drilled hole

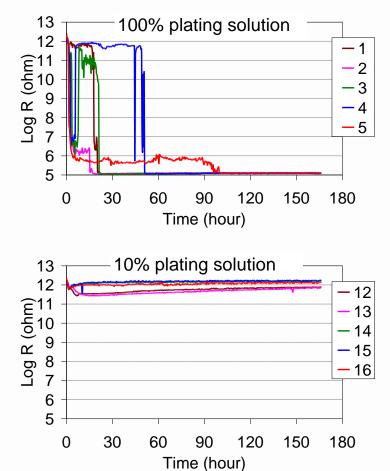


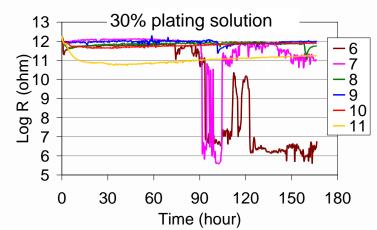

- STV placed on adhesive tape.
- Hole filled with 1µl different concentration plating solutions.
- Filling solution dried for 2 hours at room temperature before CAF testing.

MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA


CAF formation – desmear process

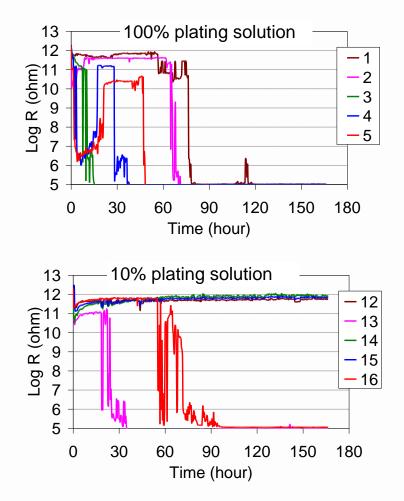
No-desmear

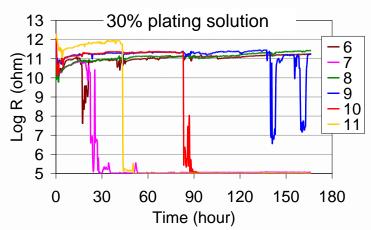

Desmeared



MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

CAF formation without desmear

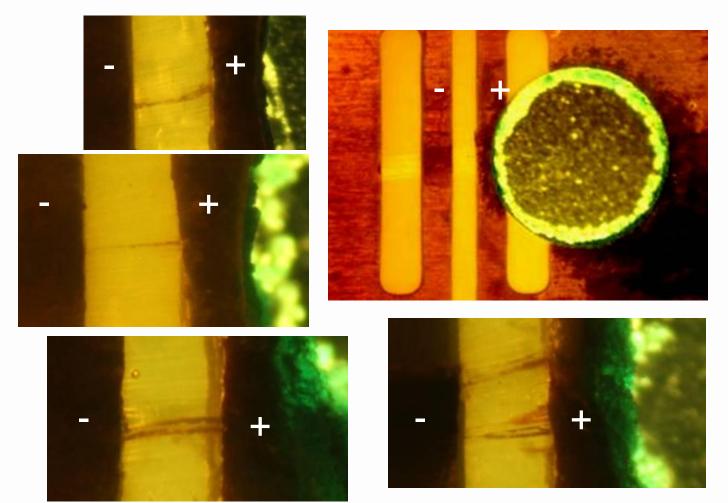

- Phenolic cured resin & 7628 finished glass fibre (B)
- More CAF formed with contamination increase



MANDALAY BAY RESORT AND CONVENTION CENTER LAS VEGAS, NEVADA

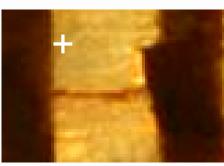
NEW IDEAS ... FOR NEW HORIZONS

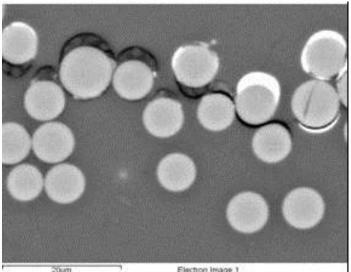
CAF formation with desmear



- Phenolic cured resin & 7628 finished glass fibre
- Desmear process increase CAF formation, but not significant.

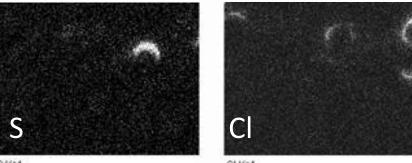
Examples of CAF growth in STV

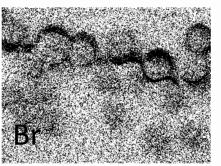




MARCH 25-27

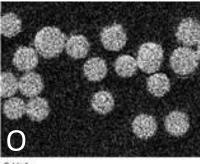
AY BAY RESORT AND MANDA CONVENTION CENTER LAS VEGAS, NEVADA


CAF formation



20µm Electron Image 1 Cu

Cu Kat



S Ka1

BrLa1 2

CI Ka1

0 Kat

Conclusions

 STV has been successfully used to evaluate the effect of different resin systems, different glass fibres, desmear process, reflow process and glass fibre bundle size on CAF failure.

- Heat cleaned and loom state fibres form CAF more easily than finished fibres. Loom state fibre has the highest propensity to form CAF compared with others.
- Phenolic cured resin promote more CAF than DICY cured resin, this is probably because the DICY was removed when the resin was dissolved in acetone in our sample preparation.
- Desmear process can increase CAF formation, but not significant.
- Reflow process increase CAF formation significantly.
- Large bundle size increase CAF formation, but not significant.