

## An Integrated Registration System for High Technology Multilayer PCBs

## **Terry Haney**

**XACT PCB & Excellon Automation** 







### **Embracing New Technologies to Survive...**



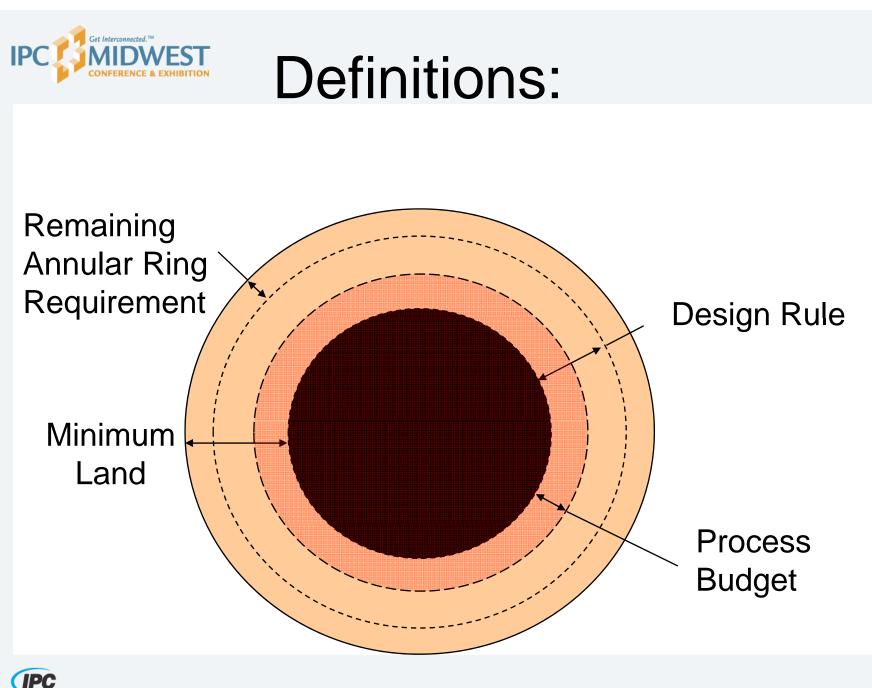






# A definition






## The Registration Budget The allowance in a PCB design to cope with distortion of the materials, variance of process and manufacturing methods"



Required Annular Ring





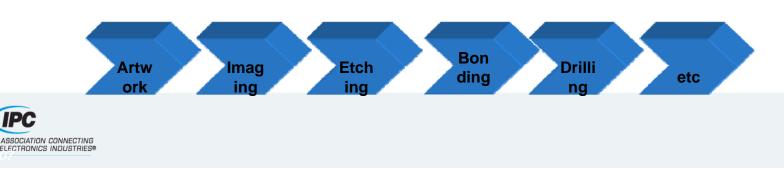
ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®



## PCB Registration is like economics:

*"It all works best when you have a BUDGET that you can understand, stay within and balance".* 







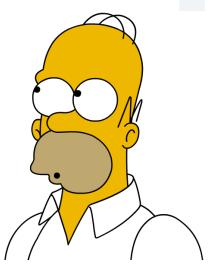



# **Registration Budget**

- Every design has a determinable Registration
  Budget an allowance for the sum of process/material variations
- Every time a compensation is applied at a process step, part of this budget is used up
- Standard "best fit" compensations can use more of the budget than intelligent, process aware compensation systems.







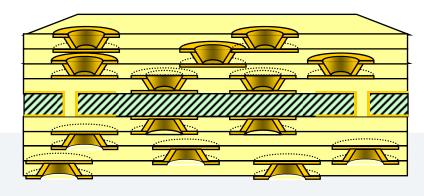

# **Registration Budget**

- If all the registration budget is used up at bonding, then drilling in specification will be impossible
- ... or

ASSOCIATION CONNECTING

 If all the beer money is gone by Tuesday then Friday night is much less fun!






ASSOCIATION CONNECTING



# **Customer Driven**

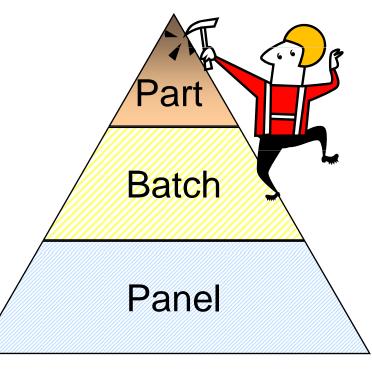
- Density demands increasing
- Registration Budget decreasing:
  - Increasing layer count for complex through hole PCBs
  - Tighter design rules: smaller annular ring
    - e.g. CSP, Cell phones etc: increasing level of SBU (up to 4+2+4 and 3+4+3)





## The Registration Challenge: Customer Driven

- Customers require the collation of data from the ENTIRE process to drive process improvement
- Finished PCB dimensional tolerances getting tougher
  - For some designs is not allowed to compensate
  - Prediction of correct scale factor is critical
- Awareness of non linear distortion is increasing rapidly (PCB and OEM)






ASSOCIATION CONNECTING



# The PCB Tooling Challenge



- Currently, PCB shops tool for the part number
- Yet, variation takes place at the batch level
- ..and almost always at the panel level



SSOCIATION CONNECTING

## Get Interconnected.<sup>74</sup>

# Panel Level Compensation

- Latest generation equipment provides individual panel compensations based upon measurement of targets (e.g. Intelli-Drill®, Laser drill, X-ray/camera aligned drill machines and LDI)
- Registration system can link process data to make INTELLIGENT decisions about subsequent processes.



## Registration system Interface with Optimiser

- Uses standard targets for each layer
  - Linear
    - 4 corner positions
  - NonLinear
    - Multiple peripheral positions
- Registration system reads optimiser's database





### **Collecting Data:**

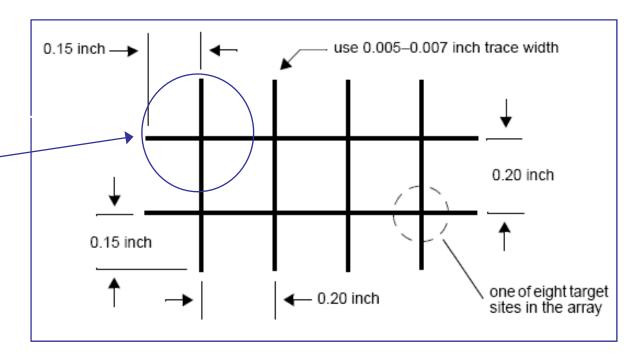
- Target Acquisition
- Internal Layer Inspection
- Vision Algorithms-X,Y Offset, Rotation, Scaling and Best Fit
- Vision Corrected (Best Fit) Drilling of Circuit Pattern or New Tooling Holes
- Average Best Fit of Tooling for a Batch / Lot of Panels





Thi tha pos

It is

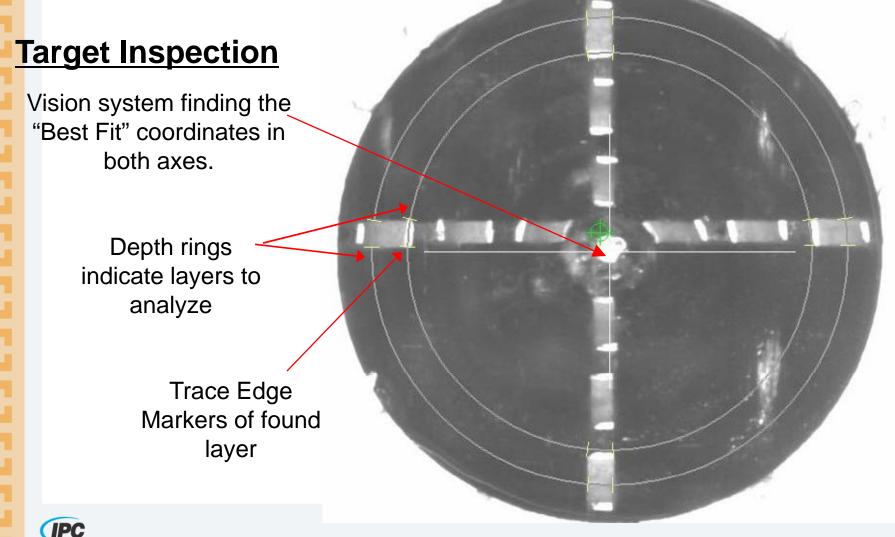

en

IPC E

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

### **Internal Targets**




X-Ray would use round images on each layer



ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

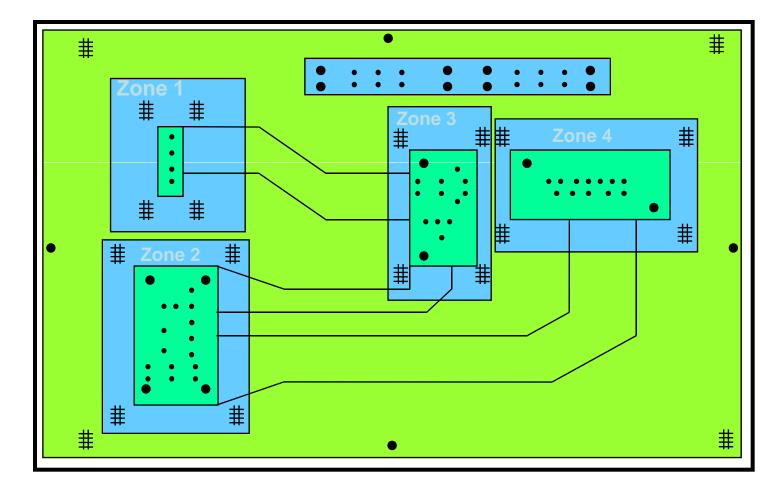






Get Interconnected.™ MIDWEST CONFERENCE & EXHIBITION

#### **Drill Layer Measurement Data**


🕎 Drill Layer Measurements: 1

| Date/Time         | Drill Program    | Zone       | Group   | Layer | Target | X Nominal | Y Nominal | X Offset  | Y Offset      | TPR      |
|-------------------|------------------|------------|---------|-------|--------|-----------|-----------|-----------|---------------|----------|
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 02    | 01     | -09.55420 | 00.76100  | 00.00720  | 00.00656      | 00.00975 |
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 01    | 01     | -09.55420 | 00.76100  | 00.00792  | 00.00710      | 00.01064 |
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 01    | 02     | 09.35650  | 00.76530  | -00.00086 | 00.00595      | 00.00602 |
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 01    | 04     | -09.55650 | 22.27560  | 00.00606  | -00.00557     | 00.00823 |
| 09/21/06 10:23:09 | PANEL-01         | 01         | 01      | 02    | 02     | 09.35650  | 00.76530  | -00.00185 | 00.00472      | 00.00507 |
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 02    | 03     | 09.35430  | 22.27830  | -00.00306 | -00.00449     | 00.00543 |
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 02    | 04     | -09.55650 | 22.27560  | 00.00568  | -00.00531     | 00.00777 |
| 9/21/06 10:23:09  | PANEL-01         | 01         | 01      | 01    | 03     | 09.35430  | 22.27830  | -00.00309 | -00.00482     | 00.00573 |
| 9/21/06 11:08:22  | PANEL-02         | 01         | 01      | 01    | 04     | -09.55650 | 22.07560  | 00.00567  | -00.00644     | 00.00858 |
| 9/21/06 11:08:22  | PANEL-02         | 01         | 01      | 02    | 04     | -09.55650 | 22.07560  | 00.00453  | -00.00587     | 00.00741 |
| 9/21/06 11:08:22  | PANEL-02         | 01         | 01      | 02    | 03     | 09.35430  | 22.07830  | -00.00433 | -00.00528     | 00.00683 |
| 9/21/06 11:08:22  | PANEL-02         | 01         | 01      | 01    | 01     | -09.55420 | 00.56100  | 00.00440  | 00.00717      | 00.00841 |
| onstraints        |                  |            |         |       |        |           |           |           | <b>I I</b> 11 | •        |
| Data Source       | panel            |            |         | Г     | Zone   | _ [       | Group     |           |               |          |
| Orill Program     | <b>v</b>         | Match sul  | bstring |       |        |           |           |           | Quer          | y I      |
| Range             | 3:09 💉 To 10/20/ | 06 11:20:4 | 5 💌     | Г     | Target |           | Layer     |           |               | 1        |

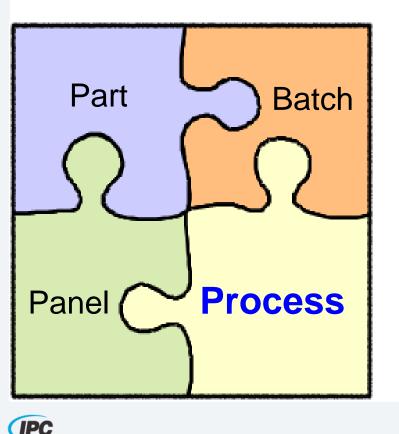
ASSOCIATION CONNECTING



Get Interconnected.<sup>TM</sup>



Vision Corrected Zone Drilling


ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®



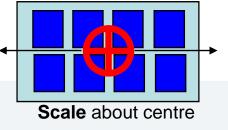
ASSOCIATION CONNECTING



## Expert Registration System Methodology



- Data drives Intelligent decisions for Tooling and Process
  - Panel,
  - Batch(es),
  - Part number
- Learn about the Process
  and Part number
  requirements by
  understanding the Batch
  and Panel level distortions


Get Interconnected.™ MIDWEST CONFERENCE & EXHIBITION

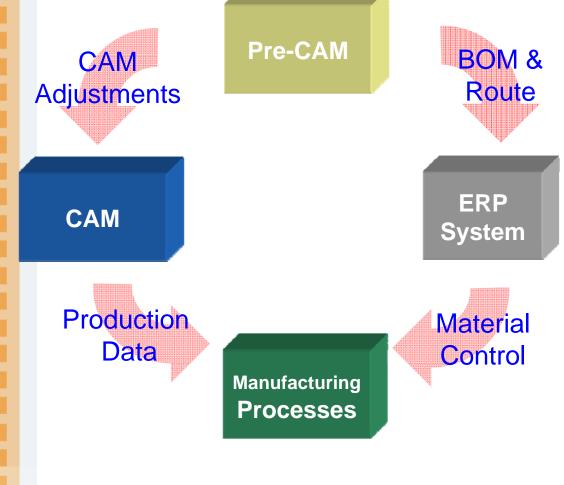

# System's Intelligent Decisions

- Determine the Registration Budget for the product
- Rules-based decisions: Always target nominal at end of process.
  - Apply Linear or Non Linear Scale compensation ?
  - Apply Step only
  - Apply Scale AND Step
  - Do nothing.

ASSOCIATION CONNECTING

- Establish Product Confidence at each step in the process
- Create modified tooling for downstream processes
- Establish Panel-level / Batch-level traceability

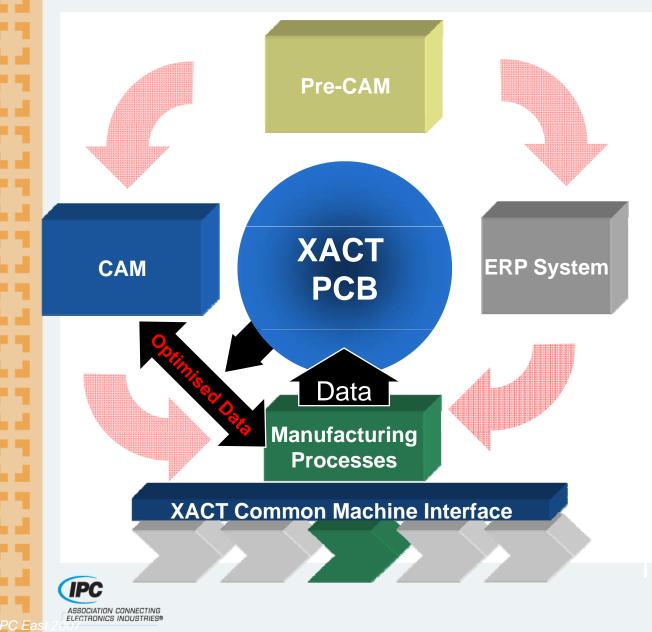





Change circuit **STEP** Means splitting the error



Get Interconnected.™


### **Generic Engineering Work Flow**



- Machines and  $\bullet$ CAM are not directly linked
- There is little or no data flow from the process back to CAM & Engineering
- Data is often not centralised



### XACT Linear and Non Linear Control



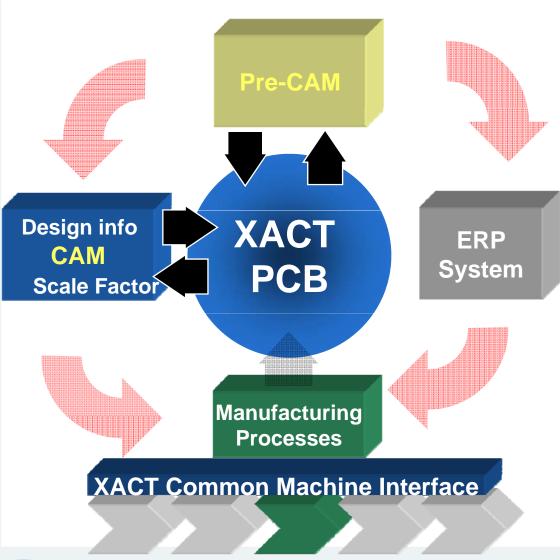
- Uses a Common Machine Interface to process data from the post bond optimisers
  - Intelli-Drill®
  - X Ray Drill
  - X Ray CMM
  - Etc
- System Returns
  - Intelligent and optimised drill data and scale factors



## **Batch and Panel Analysis**

- System interfaces to production machines via a common graphical interface
- Batch and Panel data can be analysed and compared to previous production
- Closed loop to CAD for batch and (if required) panel compensation






IPC

ASSOCIATION CONNECTING



### Linear and Non Linear Prediction



- Pre-CAM & CAM Provide

   Cu distribution
  - Stackup
- XACT Returns
  - Accurate,
    Predicted
    Layer Scale
    Data
  - Scale Factor Confidence levels and data from previous builds

### IPC MIDWEST Registration system configurations

#### Linear

IPC

ASSOCIATION CONNECTING

Optimises batch-to-batch variability, measure and compensate dynamically. Improves yield immediately

#### Linear+

All the features of Linear combined with advanced prediction capability

#### NonLinear

Linear+ combined with **Non-Linear measurement and compensation** capability

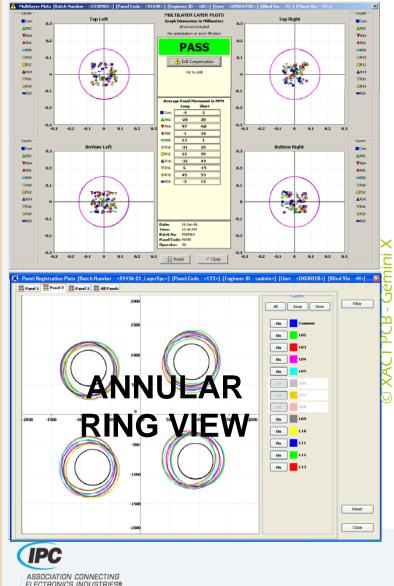
#### NonLinear

Non-linear prediction & compensation capability

Designed for HDI production at the best possible yield



Machine Analysis


CAM/ERP

Database Drill Optimiser Interfaces Interfaces





### Measurement and Analysis Common Machine Interface



### Linear and Linear+

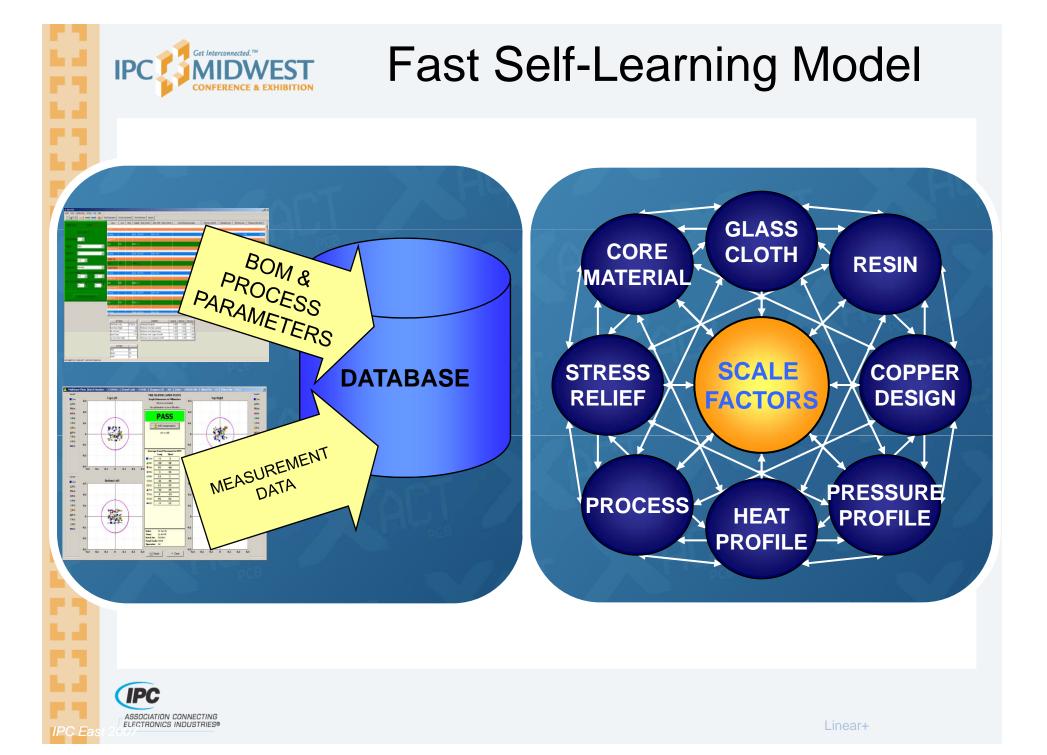


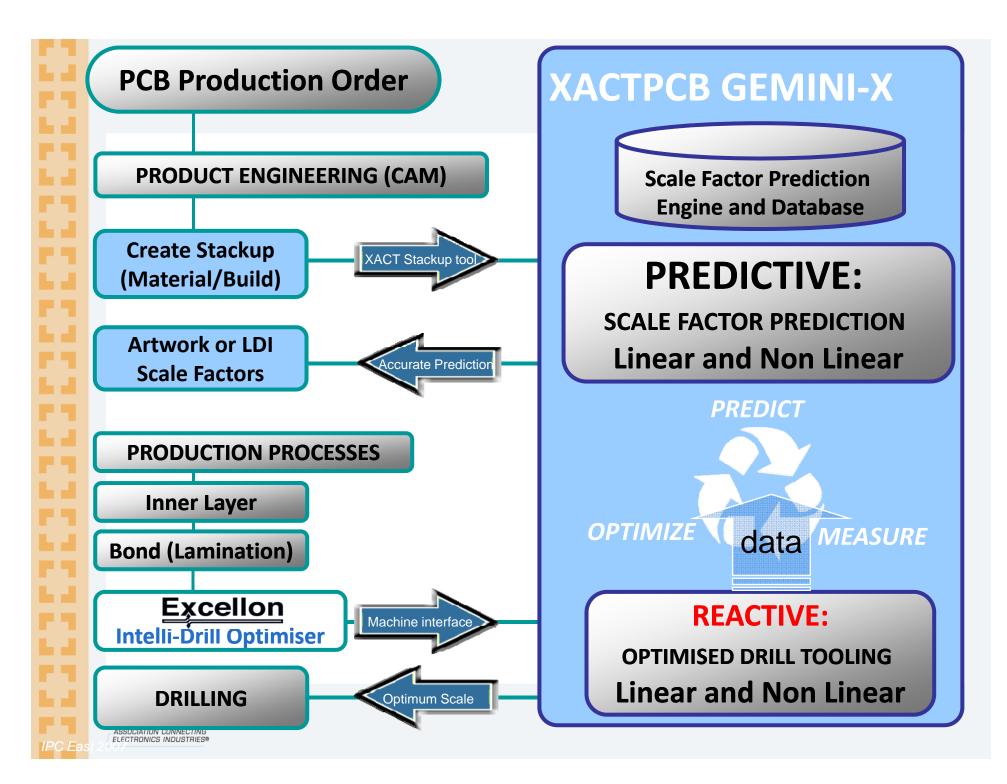


### Direct link to process machines Improve yields immediately

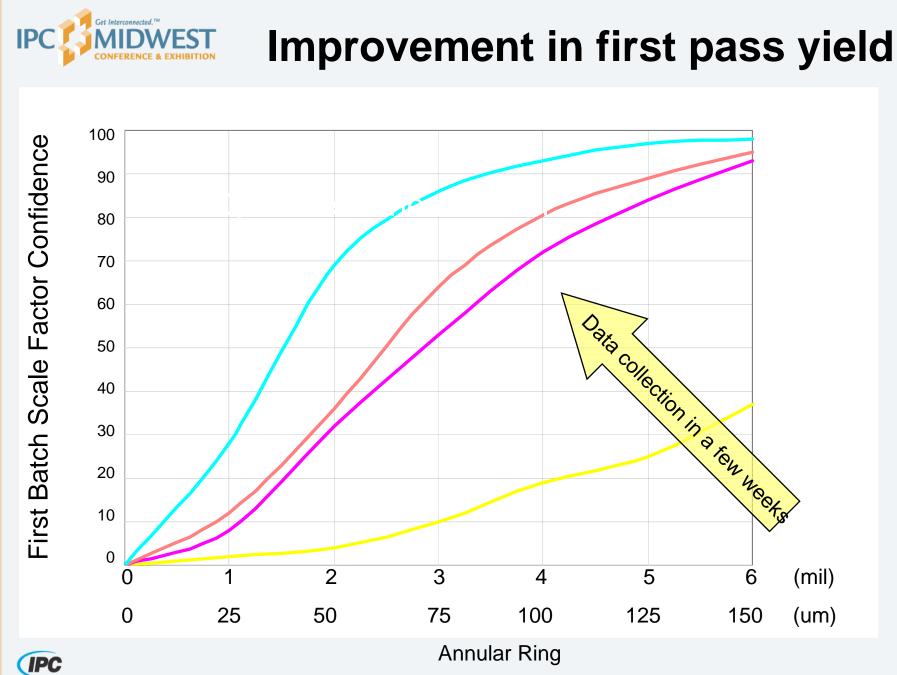
Feed forward and feed back compensation derived in real time

Reporting for every panel of a batch if required




# Registration System Predictive Model


- Self learning model
- Powerful and Fast algorithm
- The model is easy to train
- Implement with CAM
- Unmatched accuracy











(mil)

(um)

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®



## Conference & exhibition

# Linear+ summary

✓ Interface with existing equipment and data
 ✓ Close the loop between CAD and process

- Predict scale factors with unrivalled accuracy
- No large coupons no loss of expensive real estate
- ✓ Improve yields
- ✓ Reduce leadtime
- Improved throughput
- ✓ Improve profit







## AND NOW

### "The Rest of the Story"





## Non Linear distortion



IPC E

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®





### Non-Linear Measurement (an inner layer core after bonding) Inner layer Core



### Stackup

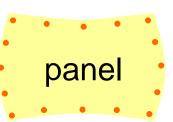


Each core and the full stackup is characterised by its Non Linear distortion








| E Configuration  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                       |                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|
| Report Overlay   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                       |                                               |
| Distortion Model | Panel Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | Distortion Model (Linear Compensated) | Distortion Model (Non Linear Compensat        |
|                  | Common      Laver ID        IP      COMMON        IP      E        IP      IN4        IP      IN4        IP      IN14        IP      IN14        IP      IN14        IP      IN14        IP      IN16        IP      IP        IP      IP  < | Colordation<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                                       |                                               |
|                  | Average Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210 Microns<br>76 Microns<br>75 Percent                                                                         |                                       |                                               |
|                  | Average Deviation<br>In Tolesance 1<br>Non-Linear Compensation<br>Min Design Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I⊽ Scale<br>85 Microns<br>29 Microns<br>100 Percent<br>46 Microns<br>17 Microns                                 |                                       | -300 0 200<br>100<br>100<br>100<br>100<br>200 |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 Microns<br>100 Percent                                                                                       |                                       |                                               |

IPC

ASSOCIATION CONNECTING

### NonLinear and NonLinear

### **Peripheral measurements**

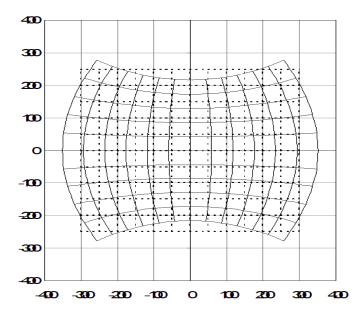




| 🕸 X-Act Non-Linear Measurement Analysi | s                                                                                                                                                                                                                                                                                                                                                                                  |                           |                  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|
| Ele Edit Configuration Help            |                                                                                                                                                                                                                                                                                                                                                                                    |                           |                  |
| Data Report Overlay                    |                                                                                                                                                                                                                                                                                                                                                                                    |                           |                  |
| Distortion Model                       | Analysis Results                                                                                                                                                                                                                                                                                                                                                                   | Adjusted Distortion Model | $\sim$           |
|                                        | Long Avis Offeet - 46 microns<br>Short Avis Offeet - 15 microns<br>Fortain - 0.0037 degrees<br>Long Avis Distortion - 46 ppm<br>Rhombo Distortion - 46 ppm<br>Long Avis Scale Enc - 271 ppm<br>Oergin Limit - 100 microns<br>Area within Tolerance - 100 percent<br>Area within Tolerance - 52 microns<br>Area within Tolerance - 52 microns<br>Area within Tolerance - 52 microns |                           | ACT PCB - Gemini |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                    |                           | $\mathbf{X}$     |
| -200 0 200                             | Adjust Model                                                                                                                                                                                                                                                                                                                                                                       | -200 0 200                |                  |
| 200                                    | Iv Botate ☐ 3D Rotation                                                                                                                                                                                                                                                                                                                                                            | 200 0 200                 | U                |
|                                        | Control<br>Layer to Analyse Common<br>Design Rule 120<br>Apply Rule                                                                                                                                                                                                                                                                                                                | 100<br>8<br>116<br>200    |                  |

### Unique analysis capability

Compensate non linear distortion (Linear and NonLinear reactive capability)


Feedback non linear distortions



# **Non-Linear Prediction**

### Standard process



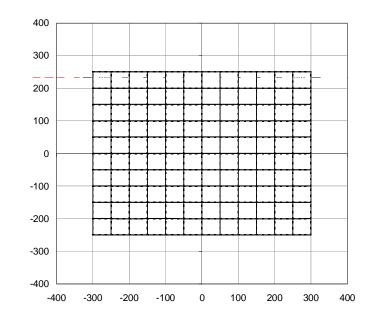













## **Non-Linear Prediction** "Inverse Distortion applied at CAM"

### Non-Linear Compensation At CAM

PC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®









#### Get Interconnected.™ MIDWEST CONFERENCE & EXHIBITION

# Non Linear+ Summary

- Prediction of non linear distortion:
  - inversely scale artworks or LDI data.
- ✓ Improve HDI capability
- ✓ Design for manufacture verification
- No coupons no loss of expensive real estate
- ✓ Improve yields
- ✓ Reduce leadtime
- ✓ Improve profit







# Summary of System's Solutions

- Instantly improve yields and product quality
- Maximise return from installed capital base
- ROI within weeks
- Reduce lead-time
- Maximise profit
- Link CAM with key shop-floor process controls





SSOCIATION CONNECTING

Get Interconnected.™ MIDWEST CONFERENCE & EXHIBITION

# Conclusions

- Understanding your *registration budget* is critical
- The *registration budget* is going to get tougher and we have to be ready
- The paradigm of tooling only for the part number is changing
- Understanding the process means understanding the batch and panel level variation





- Tools from XACT PCB and Excellon can ensure that you are ready for the next challenges of registration.
- THANK YOU, Excellon®

Precision Drilling • Routing • Micromachining



