

The Designers View of Lead Free

Gary Ferrari CID+, CMI FTG Circuits garyferrari@ftgcorp.com (860) 350-9300

- DFM Intro
- Why Lead Free
- Material Selection
- Lead Free Impact on Board Fabrication
- Land Characteristics
- Surface Finishes
- Quality Assurance and Testing
- Assembly Issues
- Placement Issues
- Component Selection
- Master Drawing Notes

Concern over: Exposure Landfill 4% of landfill is Electronics Shorter lifetime of products Issues: No full life cycle analysis What are the alternatives? Cost of substitutes 1% of lead used is Electronics

RoHS Directive number 2002/95/EC

• Restriction of Hazardous Substances in Electrical and Electronic Equipment.

RoHS Requirements

From July 1st 2006 new electrical and Electronic equipment should not contain any of the following:

- Lead
- Mercury
- Hexavalent Chromium
- Cadmium
- Polybrominated Biphenyls (PBB)
- Polybrominated Diphenyls (PBDE)

RoHS Directive

Scope

Includes all equipment dependant upon electrical currents or electromagnetic fields falling into the following categories:

- 1. Large Household Appliances
- 2. Small Household Appliances
- 3. IT/Telecommunications
- 4. Consumer Equipment
- 5. Lighting Household (including electric light bulbs and household luminaires)
- 6. Electrical and Electronic Tools
- 7. Toys,Leisure & sports
- 8. Medical devices
- 9. (Monitoring & Control Instruments)
- 10. Automatic Dispensers

Exemptions are in red and also includes 'Spare parts' used for the repair or reuse of equipment on the market before July 1st 2006

CONFERENCE & EXHIBITION Product Types NOT within RoHS

- Automotive, Aerospace, Military
 - Exclusions have never been within the legislative scope but being evaluated for inclusion at a later date
- Intended to protect national security and/or for military
- Where electricity is not main power source
 - e.g. electronic control of gas heating
- Where electronic products are not needed to fulfil the primary function
 - e.g. musical birthday card
- That are part of another type of equipment
 - do not have a direct function outside that equipment
 - e.g. vehicle engine management
- Batteries
 - Covered under battery regulations

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES

CONFERENCE & EXHIBITION Product Types NOT within RoHS

- Network Infrastructure (solder only)
- Servers and Storage Arrays (solder only) until 2010
- Equipment rated above 1000 VAC or 1500 VDC

IPC

MIL-PRF-31032

6.7 <u>Environmentally preferable material</u>. Environmentally preferable materials should be used to the maximum extent possible that the material meets or exceeds the operational and maintenance requirements, and promotes economically advantageous life cycle costs. Table I lists the Environmental Protection Agency (EPA) top seventeen hazardous materials targeted for major usage reduction. If any of these hazardous materials are required, it is recommended that it be used only when other materials cannot meet performance requirements.

Table I.	EPA top seventee	en hazardous materials.

Benzene	Dichloromethane	Tetrachloroethylene
Cadmium and Compounds	Lead and Compounds	Toluene
Carbon Tetrachloride	Mercury and Compounds	1,1,1 - Trichloroethane
Chloroform	Methyl Ethyle Ketone	Trichloroethylene
Chromium and Compounds	Methyl Isobutyl Ketone	Xylenes
Cyanide and Compounds	Nickel and Compounds	

Military Exemption??

MIL-PRF-55110 "SUPERCEDED FOR FUTURE DESIGN"??

6.6 <u>Environmentally preferable material</u>. Environmentally preferable materials should be used to the maximum extent possible that the material meets or exceeds the operational and maintenance requirements, and promotes economically advantageous life cycle costs. Table I lists the Environmental Protection Agency (EPA) top seventeen nazardous materials targeted for major usage reduction. If any of these hazardous materials are required, it is recommended that it be used only when other materials cannot meet performance requirements.

Table | EPA top seventeen hazardous materials.

Benzene	Dichloromethane	Tetrachloroethylene
Cadmium and Compounds	Lead and Compounds	Toluene
Carbon Tetrachloride	Mercury and Compounds	1,1,1 - Trichloroethane
Chloroform	Methyl Ethyle Ketone	Trichloroethylene
Chromium and Compounds	Methyl Isobutyl Ketone	Xylenes
Cyanide and Compounds	Nickel and Compounds	

Current levels are as follows:

- Lead (Pb), Mercury (Hg) and Hexavalent Chromium (Cr6+) <0.1% component weight = <1000 PPM
- Cadmium (Cd) <0.01% component weight = <100PPM
- PBB's and PBDE's <0.1% component weight = <1000PPM
- " By weight in homogeneous materials shall be tolerated"

What is the definition of 'homogeneous materials'?

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Hidden Banned Substances?

Mechanical fixings – may be Zn plated with hexavalent Cr used as a passivation layer

Plastics – may contain Pb, Cd or PBDE

Components – may have Pb on surface finish or as internal connections

Material Selection

Material Selection

- Resin Formula
- Flame Resistance
- Thermal Stability
- Mechanical Strength
- Electrical Properties

PC

ASSOCIATION CONNECTING

Material Selection Cont'd

- Flexural Strength
- Reinforcing Sheet Material
- Maximum Operating Temperature
- CAF Resistant
- Halogen Free

But, is this enough?

Definition:

The temperature at which an amorphous polymer changes from being in a hard and relatively brittle condition to being in a viscous or rubbery condition.

Test Methods

Dynamic Mechanical Analysis (DMA) Measures modulus

Differential Scanning Calorimetry (DSC) Measures rate of heat absorption

Thermal Mechanical Analysis (TMA) Measures expansion rate

Post-Tg CTEs are higher than pre-Tg CTEs.

 "A" exhibits more total Z axis expansion than "B" because of a lower-Tg.

Thickness

• But "C", even with a higher Tg, exhibits more total Z-axis expansion than "A" because its post- Tg CTE is so high.

Typical Supplier Data Sheets

Key Engineering Values					
	N4000-13	N4000-13 SI			
X/Y CTE (ppm/°C)[-40 to 125°C]	10 - 14	9 - 13			
Z Axis Expansion (%) [50 to 260°C]	3.5	3.5			
T _q by DSC (°C)	210	210			
Dielectric Constant (50% resin content)					
@ 1 GHz (RF Impedance)	3.7	3.5			
@ 2.05 GHz (Split Post)	3.9	TBD			
@ 10 GHz (Stripline)	3.6	3.2			
@ 10 GHz (Split Post)	3.7	3.3			
Dissipation Factor (50% resin content)					
@ 2.05 GHz (Split Post)	0.008	TBD			
@ 10 GHz (Stripline)	0.009-0.011	0.009			
@ 10 GHz (Split Post)	0.009	0.006			

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Typical Supplier Data Sheets

Key Engineering Values				
	N4000-13	N4000-13 SI		
X/Y CTE (ppm/°C)[-40 to 125°C]	10 - 14	9 - 13		
Z Axis Expansion (%) [50 to 260°C]	3.5	3.5		
T _g by DSC (°C)	210	210		
Dielectric Constant (50% resin content)				
🙍 1 GHz (RF Impedance)	3.7	3.5		
@ 2.05 GHz (Split Post)	3.9	TRD		
@ 10 GHz (Stripline)	3.6	3.2		
@ 10 GHz (Split Post)	3.7	3.3		
Dissipation Factor (50% resin content)				
@ 2.05 GHz (Split Post)	0.008	TBD		
@ 10 GHz (Stripline)	0.009-0.011	0.009		
@ 10 GHz (Split Post)	0.009	0.006		

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Typical Supplier Data Sheets

POLYCLAD LAMINATE/PREPREG GRADE - PCL-FR-370HR/PCL-FRP-370HR (Provisional) IPC-4101A SPECIFICATION SHEET(S) /98

LAMINATE							
Typical Values/IPC-4101/98 Specification							
		Thickness <0.50 mm (< 0.0197 in)		Thickness ≥0.50 mm (≥ 0.0197 in)		Units	Test Method
Prope	rty	Typical Value	Specification	Typical Value	Specification	Metric (English)	IPC-TM-650 (or as noted)
Glass Transition Temperature (Tg) by	y DSC, spec minimum	180	150-200	180	150-200	°C	2.4.25
Decomposition Temperature (Td)		350	-	350	-	°C	ASTM D3850
CTE, Z-axic	A. Pre-1g B. Post-Tg	_	AABUS —	45 220	AABUS	ppm/°C	2.4.24
CTE, X-, Y-axes	A. Pre-Tg B. Post-Tg	_	AABUS —	14 16	AABUS	ppm/°C	2.4.24
Thermal Conductivity		-	-	TBD	-	W/mK	ASTM D5930
Thermal Stress 10 Sec @ 288°C (550.4°F), spec minimum	A. Unetched B. Etched	Pass Pass	Pass Visual Pass Visual	Pass Pass	Pass Visual Pass Visual	Rating	2.4.13.1
Permittivity, spec maximum (Laminate & prepreg as laminated)	A. @ 1 MHz B. @ 100 MHz C. @ 1 GHz	4.7 4.6 4.4	5.4 — —	4.8 4.6 4.5	5.4 — —	-	2.5.5.3 2.5.5.9 2.5.5.5
Loss Tangent, spec maximum (Laminate & prepreg as laminated)	A. @ 1 MHz B. @ 100 MHz C. @ 1 GHz	.015 .015 .015	0.035	.015 .015 .015	0.035	-	2.5.5.3 2.5.5.9 2.5.5.5
Volume Resistivity, spec minimum	A. 96/35/90 B. After moisture resistance C. At elevated temperature	1.0x10 ⁸ 	10 ⁵ — 10 ³	9.5x10 ⁸ 9.6x10 ⁶		MΩ -cm	2.5.17.1
Ourface Desistivity and minimum	A. 96/35/90	2.0x10 ⁸	10 ⁴	2 0:-107	- 404	мо	05474

IPC-4101 Slash Sheet

Proposed Specification Sheet

Specification Sheet # Reinforcement Resin System	:	IPC-4101/99 Woven E-glass Primary: Epoxy	
Curing Agent Flame Retardant Mechanism	:	Secondary 1: Multifunctional Epoxy Non-Dicy Bromine / RoHS Compliant	Secondary 2: Modified Epoxy or Non-epoxy (max. 5%)
Fillers D Reference	:	Contains inorganic fillers UL/ANSI: FR-4/99	Keywords (For search only; not grade
Glass Transition (Tg)	:	150 – 200°C	- Lead-free FR-4
JL Max Operating Temp	:	130°C rating	 CAF resistance High decomposition temperature High reliability ER-4

- Low Z-axis CTE

LAMINATE REQUIREMENTS

	Laminate Requirement	Specification <0.50 mm [0.0197 in]	Specification ≥0.50 mm [0.0197 in]	Units	Test Method	Ref. Para.
1.	Peel Strength, minimum	-	- I - I			
	 A. Low profile copper foil and very low profile copper foil - all copper weights > 17µm 					
	[0.669 mil]	AABUS	AABUS		24.8	3.9.1.1
	B. Standard profile copper foil			N/mm	2.4.8.2	3.9.1.1.1
	 After Thermal Stress 	0.80 (4.57)	1.05 (6.00)	(lb/inch)	2.4.8.3	3.9.1.1.2
	 At 125°C [257 F] 	0.70 (4.00)	0.70 (4.00)			3.9.1.1.3
	After Process Solutions	0.55 (3.14)	0.80 (4.57)			
	C. All other foil – composite	AABUS	AABUS			
2.	Volume Resistivity, minimum					
	A. C-96/35/90	10 ⁶		Mo	2 5 17 1	2 44 4 2
	B. After moisture resistance	_	10⁴	IVIS 2-CITI	2.5.17.1	5.11.1.5
	C. At elevated temperature E-24/125	10 ³	10 ³			

IPC-4101 Slash Sheet

			1	1	1
 Surface Resistivity, minimum A. C-96/35/90 B. After moisture resistance C. At elevated temperature E-24/125 	10 ⁴ — 10 ³	 10 ⁴ 10 ³	MΩ	2.5.17.1	3.11.1.4
Moisture Absorption, maximum	-	0.5	%	2.6.2.1	3.12.1.1
Dielectric Breakdown, minimum	-	40	kV	2.5.6	3.11.1.6
 Permittivity at 1 MHz, maximum (Laminate & Prepreg as laminated) 	5.4	5.4	_	2.5.5.3 2.5.5.5 2.5.5.6	3.11.1.1 3.11.2.1
 Loss Tangent at 1 MHz, maximum (Laminate & Prepreg as laminated) 	0.035	0.035		2.5.5.3 2.5.5.3 2.5.5.9	3.11.1.2 3.11.2.2
 Flexural Strength, minimum A. Length direction B. Cross direction 	_	415 (60,190) 345 (50,140)	N/mm² (Ib/in²)	2.4.4	3.9.1.3
Flexural Strength at Elevated Temperature, length direction, minimum	-	-	N/mm ² (lb/inch ²)	2.4.4.1	3.9.1.4
10. Arc Resistance, minimum	60	60	s	2.5.1	3.11.1.5
 Thermal Stress 10 s at 288°C [550.4F],minimum A. Unetched B. Etched 	Pass Visual Pass Visual	Pass Visual Pass Visual	Rating	2.4.13.1	3.10.1.2
12.Electric Strength, minimum (Laminate & Prepreg as laminated)	30	_	kV/mm	2.5.6.2	3.11.1.7 3.11.2.3
 Flammability, (Laminate & Prepreg as laminated) 	V-0 minimum	V-0 minimum	Rating	UL94	3.10.2.1 3.10.1.1
14. Glass Transition Temperature		150 - 200 minimum	°C	2.4.24 2.4.25	3.10.1.6
15. Decomposition Temperature		330 minimum	°C	TBD (5% wt loss)	3.10.1.10
16. Z-Axis CTE A. Alpha 1 B. Alpha 2 C. 50 to 260 Degrees C		60 maximum 300 maximum 3.5	PPM/°C PPM/°C %	2.4.24	3.10.1.11

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

IPC-4101 Slash Sheet

17. Thermal Resistance A. T260 B. T288 C. T300	 30 minimum 5 minimum ABBUS	Minutes Minutes Minutes	2.4.24.1	3.10.1.12
18. CAF Resistance	 AABUS	Pass/Fail [∓]	ABBUS	3.12.1.4

^{*} Pass or Fail are determined by Fail being ≥ 1 decade drop in the sample's initial insulation resistance value. **PREPREG REQUIREMENTS**

Prepreg Requirement	Specification	Units	Test Method	Ref. Para.
1. Shelf Life, minimum (Condition 1/Condition 2)	180/90	Days	AABUS	3.17
2. Reinforcement	As p	per IPC-4412 or A	AABUS.	
3. Volatile content maximum	1.5	%	2.3.19	3.9.2.2.8
4. Prepreg Parameters	-	AABUS	AABUS	1.1.7
5. Flammability (as laminated)	V-1 minimum	rating	UL94	3.10.2.1
6. Other	_			

*AABUS = As agreed upon between user and supplier. **See Slash Sheet 2 in IPC-4121.

Lead Free Impact on Board Fabrication

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Mis-conceptions

- "Lead free assembly will have only a minor effect on laminates."
- "Just switch to existing high-Tg materials."
- "Most existing materials can be used in Lead free assembly without a significant problem."

Challenges as a result of Higher Temperature Processing

Problems	 Through hole reliability
TTODICITIS	 Delamination
	Measle
	 Blister resistance
	 Z Axis expansion
Mechanisms	 Thermal stability
	 Degradation temp/Tg
Key Base Material Properties	Time at temperature performance

<u>Lead Free Impact on Board Fab</u> <u>Worse Case Results</u>

A Common High Tg FR-4 After Lead Free Assembly

MIDWEST Lead Free Impact on Board Fab **Decomposition Temperature - Td**

Definition:

The Temperature at which a 5% weight loss occurs by thermal gravimetric analysis (TGA) using Test Method ASTMD3850

SSOCIATION CONNECTING

Lead Free Impact on Board Fab Decomposition Temperature - Td

What happens as the decomposition temperature is exceeded?

Irreversible degradation and damage of material due to breakage of chemical bonds

Even 2-3% loss, especially when exposed to multiple thermal cycles, can significantly degrade reliability

• The point at which this level of decomposition occurs is critical.

ASSOCIATION CONNECTING

Definition:

A number of ways to evaluate -

T260/T288 measures time to delamination at specific temperature (i.e. 260° C/288° C) Test Method: IPC-TM-650

- T260 = 30 minutes minimum
- T288 = 10 minutes minimum
- T300 = 1 minute minimum
<u>Lead Free Impact on Board Fabrication</u> <u>Time at Temperature Performance</u>

What happens and what does it mean?

- At the test temperature after some period of time the sample will delaminate
- Longer T260/T288 times indicate better delamination/measle/blister resistance
- Results are dependent on decomposition temperature, Tg and other factors

Material Type/Property	Material A	Material B	Material C	Material D	
Resin System	High Tg Epoxy	Enhanced High Tg	High Tg Epoxy	Mid Tg Epoxy	
Primary Cure Chemistry	Non-Dicy	Non-Dicy	Dicy	Dicy	
Tg (DSC)	175°C	210° C	175°C.	155°C.	
CAF Resistant	Yes	Yes	No	Yes	
Contains Bromine	Yes	Yes	Yes	Yes	
Dielectric Constant (1 MHz)	4.3	3.9	4.3	4.5	
Dissipation Factor (1MHz)	0.020	0.009	0.023	0.018	
X/Y axis CTE (-40 to +125°C)	12-14 ppm/°C	10-14 ppm/°C	12-16 ppm/°C	12-15 ppm/°C	
Low Z-CTE Resin Chemistry	Yes	Yes	No	Yes	

Table 1 – PWB Substrate Material Properties

Park Electrochemical Corp.

IPC

EXAMPLEST Lead Free Impact on Board Fab Supplier Material Studies

Property/Condition	Material A	Material B	Material C	Material D
Resin System	High Tg Epoxy	High Tg Enhanced	High Tg Epoxy	Mid Tg Epoxy
Tg (DSC)	175°C	210º C	175°C.	155°C.
Tg (TMA)	165°C	200° C	170°C.	150°C.
Tg (DMA)	195°C	240°C	180°C	160°C.
Degradation Temperature				
(TGA - 5% weight loss)	362°C	357°C	325°C	330°C.
Z axis expansion*				
(50 to 260°C in %)	3 20%	3 50%	3 70%	3 80%
Z axis expansion				
(50 to 288°C)	4.20%	4.10%	5.90%	4.60%
Moisture Resistance				
(24 hr. immersion)	0.15%	0.10%	0.15%	0.07%
T260	30 min.	> 30 min.	7 min.	16 min.
T288	6 min.	9 min.	N/A	1.4 min.
Solder Float (4"x4" Cu Clad)				
(288°C time to failure)	550 sec.	>600 sec.	230 sec.	263 sec.

Table 3 – Thermal Test Data of Substrate Materials

Park Electrochemical Corp.

Lead Free Impact on Board Fab Supplier Material Studies

 Dicy cured 140°C
 Non-dicy cured 140°C
 Dicy cured 175°C -5 Non-dicy cured 175°C
 Halogen-free 160°C
 Halogen-free 145°C 0 5 % Weight Loss 10 15 20 2 3 4 5 6 7 8 9 1 Cycles

Thermal cycles @ 235°C

Isola Laminates

PF

ASSOCIATION CONNECTING

<u>Tg and Td are not the only issues to</u> <u>consider CTE must considered as well</u>

The following formula takes all three into consideration. A minimum index of 215 is recommended for the lead free environment:

Soldering Temperature Impact Index (STII)

 $\frac{STII = (Tg + Td)/2 - (\% \text{ thermal expansion from 50} - 260^{\circ}C)X10$

IPC MIDWEST Lead Free Impact on Board Fab

Material Selection Summary:

- Specifying Tg may be necessary, but it is *insufficient*. Higher Tg is *not* always better.
- Decomposition temperature is a critical property to understand when specifying materials for Pb free assembly.
- CTE values should be considered also. Calculate STII !
- Time to delamination tests are increasingly relevant, but multilayer PCBs can be affected by other variables than just materials.
- If switching materials, verify other performance characteristics also,
 - e.g. Dk and Df values. Don't forget the electricals!

Stress Testing:

- Typical fabricator thermal testing is in the range of 1 3 thermal cycles (solder floats)
- Revised requirement for Lead Free; 5-6 thermal cycles @ 260°C
- Hats or IST testing

Land Characteristics

9.1.2 Annular Ring Requirements

The minimum annular ring for unsupported and supported holes **shall** be in accordance with Table 9-2 and Figures 9-2 and 9-3.

 Table 9-2 Annular rings (Minimum)

Annual Ring	Class 1,2,3
Internal Supported	0.03 mm
External Supported	0.05 mm
External Unsupported	0.15 mm

<u>Minimum Standard Fabrication</u> <u>Allowance For</u> <u>Interconnection Lands</u>				<u>'on</u>
	Level A	Level B	Level C	
	0.4 mm [0.016]	0.25 mm [0.010]	0.2 mm [0.008]	

Land Size Calculation

Maximum Hole Size = 0.041Annular Ring (0.005) X 2 = 0.010Fabrication Allowance = 0.010Minimum Land Size 0.041 + 0.010 + 0.010 = 0.061 Diameter

What About Lead Free Impact?

- Surface Adhesion
 - increased annular rings?
- Plated Barrel Thickness
 ductility of the copper

SURFACE FINISHES

Surface Finishes

The "Ideal" PCB surface finish would have these characteristics:

- No-clean and water soluble paste & flux compatibility
- Strong intermetallic joint BGA tensile stress
- Three reflow sequences spread over 1 week
- Storage for 1 year
- Press fit connector Compatibility
- Visually inspection quality assurance
- Lead free environmental initiatives
- Minimize total cost

Surface Finishes

Popular Lead Free Surface Finishes:

- PCB Surface Finishes
- OSP
- *Tin (Sn)*
- ENIG (NiAu)
- Silver (Ag)
- Palladium / Gold (PdAu)
- Lead Free HASL
- Gold (Au) on copper

ASSOCIATION CONNECTING

Surface Finishes

Tin Whiskers

Whiskers grow because of compressive stress in the plating which is caused by irregular growth of intermetallics

Problems with Tin Whiskers

A number of government and industry alerts have been issued relating to whiskers for aerospace, defense and medical industries. Tin Whiskers can contribute to a number of potential problems in electronic hardware. These problems include:

- Permanent short circuits
- Transient short circuits
- Metal vapor (plasma arc in a vacuum)

• Debris / contamination

ASSOCIATION CONNECTING

IPC Lead-Free Alloy Testing

ASS DOWNED MIDUS THESP	■ IPC-SPVC-WP-006
	ROUND ROBIN TESTING AND ANALYSIS
	LEAD-FREE ALLOYS
lata details and test rocedures vailable from the Veb Site /ww.ipc.org & /ttp//leadfree.ipc.org	TIN, SILVER and COPPER
	A WHITE PAPER REPORT by the LEAD-FREE TECHNICAL SUBCOMMITTEE of the IPC SOLDER PRODUCTS VALUE COUNCIL
IPC-SPVC-WP-006	2215 Sanders Rd., Northbrook, IL 60062-6135 T el. 847.509.9700 Fax 847.509.9798 www.ipc.org

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Quality Assurance

Get Interconnected. TM

ASSOCIATION CONNECTING

IPC-1401 April 2004

Raw PWB Materials Declaration

<u>(Sample)</u>

	IPC-1401	Draft document for industry consensus vote only			April 2004	
	APPENDIX A3 – SPECIFIC MATERIAL DATA					
PC-1401	Customer: Customer Part Numb Your Part Number:	er				
	Where Used	Substance	Substance Wt. (grams)	Substance %	Substance (ppm)	
	Metal Conductors	Arsenic	0.15	0.012	118	
		Chromium VI	0.00	0.000	0	
		Copper	304.20	23.930	239,296	
Proposed Publication for Ballot		Copper Phosphide	0.03	0.002	24	
		Zinc	0.00	0.000	0	
	Reinforcement	SiO ₂	284.86	22.408	224,082	
		CaO	105.50	8.299	82,990	
		Al ₂ O ₃	73.85	5.809	58,093	
		B ₂ O ₃	39.56	3.112	31,119	
		MgO	13.19	1.038	10,376	
2215 Sanders Road, Northbrook, IL 60062-6135 Tel: 941-500,0300, Eex 942-500,0309		Na ₂ O/K ₂ O	2.64	0.208	2,077	
Tel: 847:309.0700 Tax 847:309.0709 www.pc.org		Remainder	7.92	0.623	6,230	
	Resin	Bromine	72.71	5.720	57,197	
		Chlorine	0.10	0.008	79	
		Epoxy	355.02	27.927	279,273	
	Soldermask	Epoxy	6.26	0.492	4,924	
		SiO ₂	4.53	0.356	3,563	
	Surface Finish	Tin	0.71	0.056	559	
	Totals		1271.23	100.000	1,000,000	

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Used to evaluate the effects of high temperature soldering PCB structure

Types:

- Air-to-Air
- Interconnect Stress Test (IST)
- Highly Accelerated Thermal Shock (HATS)
- Reflow Oven

Interconnect Stress Test (IST)

The method uses the copper circuits (both traces and vias) integrated into the DUT as directcurrent heating elements, and is cooled to ambient temperature with circulated air.

ASSOCIATION CONNECTING

<u>Highly Accelerated Thermal</u> <u>Shock (HATS)</u>

The test uses a single chamber in which high volume hot and cold air pass stationary samples.

Chamber

Wired Modules

IST
Range: 25°C minimum
Heating Method: DC current
6 coupons
2 nets each
12 nets total
Coupons with special heating nets
Typical cycle time: 3 min. from 25 to 150°C

Preconditioning using reflow oven is the most accurate assessment of survivability!

Assembly Issues

Marking Standardization

Suggested marking per IPC-1066

Figure 4-4 Pb-Free Symbol

IPC

ASSOCIATION CONNECTING

Figure 4-5 Example of Mark Showing Category 2 and Option of Circle or Ellipse

5 LABELING CATEGORIES

5.1 Solder Finish Categories The following categories are meant to describe the Pb-free 2^{nd} level interconnect (see Figure 4-5) terminal finish/material of components and/or the solder paste/solder used in assembly.

- el SnAgCu
- e2 Other Sn alloys (ie. SnCu, SnAg, SnAgCuX, etc.) (No Bi or Zn)
- e3 Sn
- e4 Precious metals (ie. Ag, Au, NiPd, NiPdAu, but no Sn)
- e5 SnZn, SnZnX (no Bi)
- e6 Contains Bi
- e7 Low temperature solder (<150°C) containing indium but no bismuth
- e8, e9 symbols are unassigned categories at this time.

Lead Free Assembly Issues

Reflow Process Window

With Tin-Lead: melting point = 183C lower temp limit for reflow = 200C upper temp limit for reflow = 235C process window = over 30C

With 95.6Sn-3.7Ag-0.7Cu: melting point = 217C lower temp limit for reflow = 235C upper temp limit for reflow = 260C process window = 25C

High temperatures can lead to many new problems: component cracking and "popcorning", laminate measling & delamination, stress on thru-holes, second-side oxidation and non-wetting and intermetallic growths. The lower the temperature, the better!

source: Assembly, Dec.2003

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Lead Free Assembly Issues

- Wetability
- Joint appearance

Lead Free Assembly Issues

Wetability

- •Lead-free solders do not spread during reflow
- •Dependant upon Surface Finish

As Printed

Pb-Sn

Lead-free

Placement Issues

Placement Issues

- Decoupling caps placed next to large thermal masses, such as BGAs with SAC alloy balls and heat sinks, are subject to much greater heat profiles !
- Becomes a major decoupling issue for high speed applications

IPC

ELECTRONICS INDUSTRIES®

Lead Free Assembly Issues

Component Damage

- Typical Component Lead Free finishes:
 - Tin (Sn)
 - 8 12 microns typical thickness
 - Some manufacturers anneal right after plating
 - Tin/Bismuth (SnBi)
 - Nickel/Palladium/Gold (NiPdAu)
- Tested to Proposed NEMI and JEDEC
 Standards
 - JESD22A121
- Tin Whiskers
 - Some growth allowed under certain conditions

Each component would need the following information:

- *MSL testing for non-hermetic sealed plastic parts (J-STD-020C)*
- Testing Data is needed to 260°C peak
- High temperature Storage data (JEDEC 22-A103-B)
- Tin whisker testing
- Maximum reflow temperature rating
- Solderability Test with tin-lead and lead free solder (J-STD-002B)

ROHS compliant:

- Lead, Mercury, Hexavalent Chromium, PBB, PBDE < 0.1 wt%,
- Cadmium < 0.01wt%

SSOCIATION CONNECTING LECTRONICS INDUSTRIES®

- Mechanical Hardware
 - Screws, nuts, washers
 - Mounting brackets
 - Card extractors
 - Roll pins
 - Etc.

Lead Free Assembly Issues -

<u>Summary</u>

For a robust lead free process consider the following

- solder used
- board surface finishes
- components and lead finishes
- printing process (stencil)
- reflow soldering
- wave soldering
- cleaning
- rework and repair

<u>Master</u> <u>Drawing</u> <u>Notes</u>

MATERIAL:

LAMINATE GLASS FIBER EPOXY FLAME RETARDANT PER IPC-4101/126, 170°C Tg MINIMUM, AS TESTED TO IPC-TM-650, 2.4.24C (TMA). DECOMPOSITION TEMPERATURE 340°C MINIMUM, AS TESTED TO IPC-TM-650, 2.4.24.6. A T288 DELAMINATION TIME OF 35 MINUTES MINIMUM, AS TESTED TO IPC-TM-650, 2.4.24.1C. A MAXIMUM THICKNESS EXPANSION OF 3% FROM 50 - 260°C. PREPREG MATERIALS PER **IPC-4101/126 SHALL MEET THE SAME REQUIREMENTS** AS BASE MATERIAL. CONSTRUCTION IN ACCORDANCE WITH FIGURE 1.

