

PCB Library Creation and Maintenance

Susy Webb, CID Sr PCB Designer Fairfield Industries Houston, Texas

swebb@fairfield.com

© 2007 Webb Designs

Library standards give Designer

- Organization
- All parts made the same way
- Same shape, appearance, attributes, etc
 - Time effectiveness
 - Many people use ONE library
 - Reduces edit time and error rate
 - Consistency
 - Reliability of part information
 - Consistent storage location

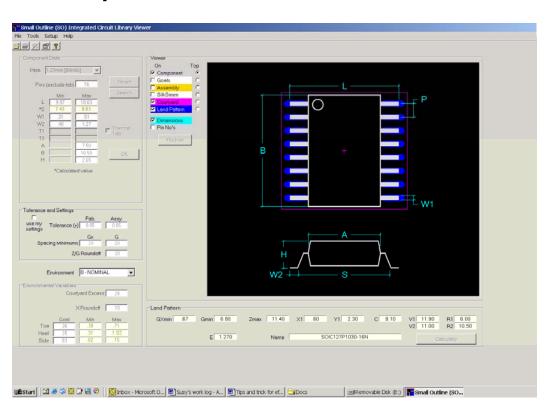
Read and understand data sheets before building parts

What part is / what it does
Source / Load / Bi-directional Pins and
Gates
Rise / Fall Time
Voltage
Component Height
Manufacturer Information
Part number / footprint needed
RoHS and Manufacturing information

Footprint Standards

- Equal appearance
 - Equal attributes
 - Equal layers
- Equal naming convention
 - Equal orientation
 - Equal model attachment

Footprint (Land Pattern) Websites


- http://www.pcblibraries.com/
 (The IPC Standard)
 - www.smtplus.com
 - Other vendors of footprints
- Individual vendor's websites (data sheets) get mfr suggested footprints

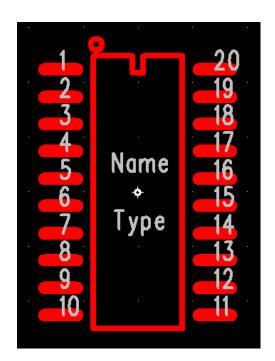
SMT Parts built per Calculator or Standard

PCB
Libraries
calculator
IPC-7351
automatically
calculates
pad and part
size based
on the pin
and part size
variables
you enter.

Calculator shown from the PCB Libraries web site.

Understand how parts (Libraries) affect PCB designer and others

- Schematic entry
- Other Designers
 - Fabricators
 - Assembly
 - Test
 - Technicians
 - Repair



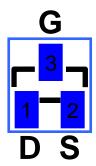
Footprint Information:

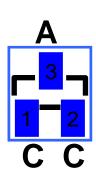
 Attribute Standards for footprint information In ADDITION to info already discussed:

- Company Part number
- Ref Des size and location
 - Voltage
 - Checked
 - Mfr Part Number
 - MFR ref Info
 - Lead Free
 - Alternate parts

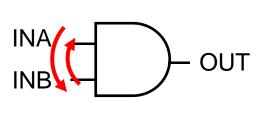
Metric vs. Imperial

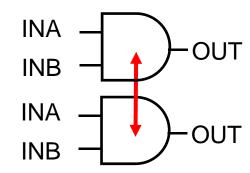
When making PCB Footprint:

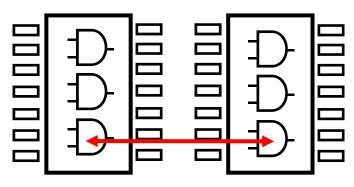

- Build Metric parts on Metric grid
- Build Imperial parts on Imperial grid
- Using the 'Native Grid' prevents tolerance buildup when translating from one grid system to the other
- Origin and part centroid on proper grid for placement


Pin Names vs Pin Numbers

- Numbers are easy for all to remember and duplicate in most parts
- Names describe function as well as position
- Some parts leave information ambiguous when using only numbers – SOT23 -1E2B3C

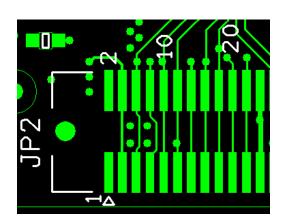





Pin and Gate Swapping

Pin Swap

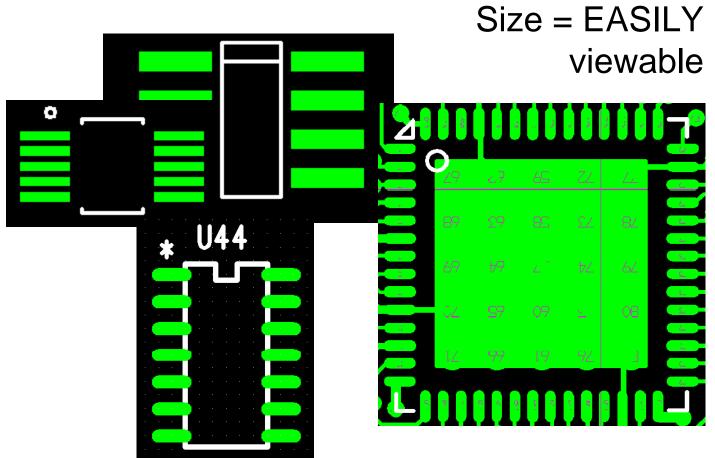
Gate Swap within Part



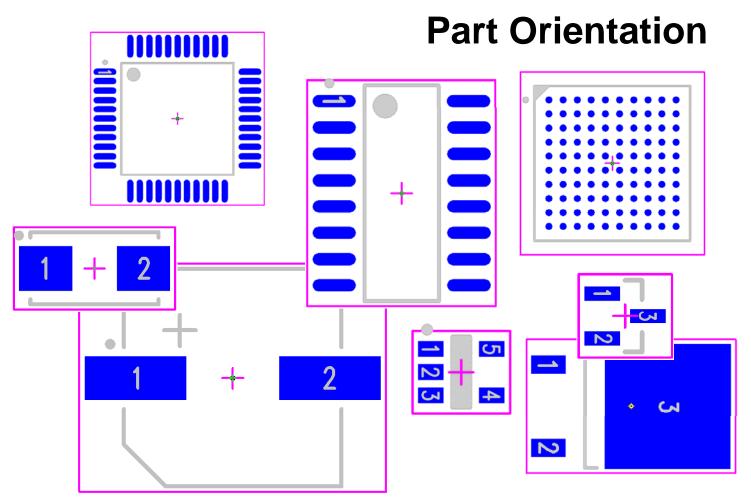
Gate Swap Part to Part

Footprint Silkscreen Markings

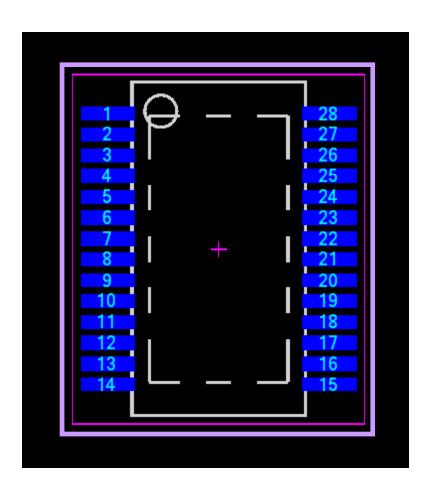
Pin 1 and 2 indication, 10s
 1A, 1B, etc.



- + and/or -
- Complete body shape size including shape irregularities
- Consistency on indicators helps those who assemble and use the board



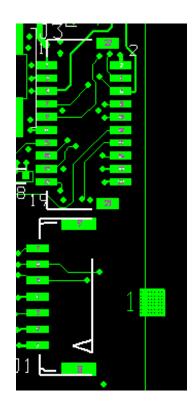
• Pin one indicator **outside** part silkscreen



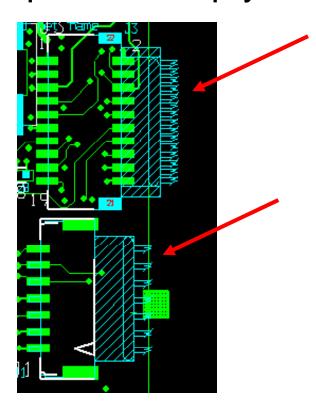
Standard Component Orientations by PCB Libraries

Part Courtyard

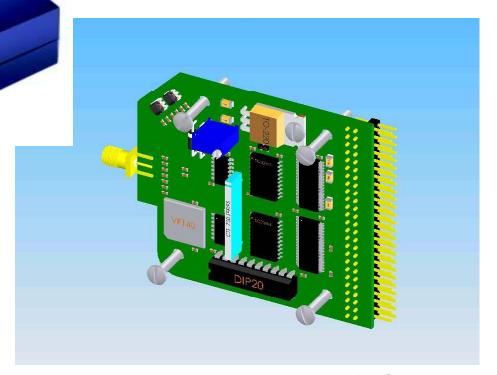
- Sets spacing around part with tolerances
 - Allows room for placement head
 - Allows for rework room


Assembly Drawing info built into Part

- Maximum part outline
 - Pads shown
- Reference Designators
 - Pin one indicators
 - Polarity Indicators
- Build information into parts to help you

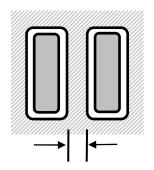


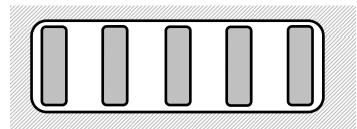
Build information into parts to help you



3D Modeling of parts

Pro-E, SolidWorks, etc.


Pictures courtesy of PCB Libraries

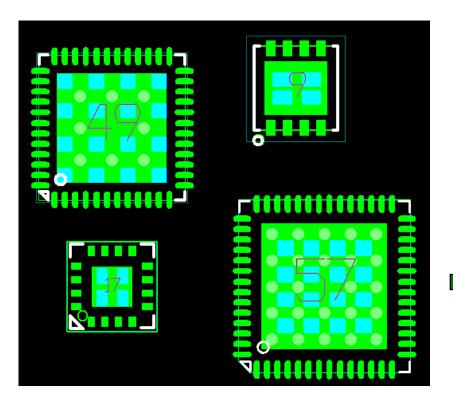

Solder Mask Opening

 Minimum solder mask 'web' size between pads depends on type of mask used

•
$$LPI = 0 - 0.0035$$
"

• Dry film =
$$.004 - .006$$
"

Avoid Gang SM openings



Solder Paste

• Several round, square, or rect openings

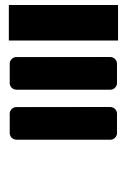
are better than one large one

Maintenance Naming Conventions

Padstacks

70c40d

TH 70s40d


SM12x84

SM_12rec84

SM.5obl1.27mm

(SM-5X1-27mm)

Pad sizes mil or mm

Maintenance Naming Conventions Generic Footprints

- Make symbols and footprints as generic as possible for re-use
 - Nand_2-Input
 - Invertor
 - Res_0805
 - C_T491A(3216)
 - SOIC14

Maintenance Part Naming Conventions

 Organize by name in the software library with a code or naming convention like:

	T	Y	P	E	
N	U	M	В	E	R

74HC257N;

74HCT257N

74HC257D;

74HCT257D

74HC257DB:

74HCT257DB

74HC257PW;

74HCT257PW

- IC-74HC257D
- Ics-74HCT257D (soic)
- Ics(soic)-74LS240D-i (ipc)
- Ict(tssop)-74HCT257PW-d (data sht)
 - R_0805-s (software)
 - C_T491D(7343)-i

Library Part Naming Conventions Land Pattern

S014	SOIC127P600-14N	SOIC,1.27mm pitch,14 pin,4.00mm W X 8.75mm L X 1.75mm H Body
S014M	SOIC127P760-14N	SOIC,1.27mm pitch,14 pin,5.70mm W X 10.10mm L X 2.03mm H Body
S014W	SOIC127P1030-14N	SOIC,1.27mm pitch,14 pin,7.50mm W X 9.20mm L X 2.65mm H Body
S016	SOIC127P600-16N	SOIC,1.27mm pitch,16 pin,4.00mm W X 10.00mm L X 1.75mm H Body
SU16M	SUIC12/P760-16N	SUIU,1.2/mm pitch,16 pin,5.70mm W X 10.40mm L X 2.03mm H Body
S016W	SOIC127P1030-16N	SOIC,1.27mm pitch,16 pin,7.50mm W X 10.50mm L X 2.65mm H Body
S018	SOIC127P760-18N	SOIC,1.27mm pitch,18 pin,5.70mm W X 12.60mm L X 2.03mm H Body
S018W	SOIC127P1030-18N	SOIC,1.27mm pitch,18 pin,7.60mm W X 13.90mm L X 2.65mm H Body
	SOIC127P1420-21N	SOIC,1.27mm [50mils] pitch,20 pin,11.10mm W X 16.00mm L X 3.60mm
	SOIC127P1420-21AN	SOIC,1.27mm [50mils] pitch,20 pin,11.10mm W X 16.00mm L X 3.60mm
SO20	SOIC127P760-20N	SOIC,1.27mm pitch,20 pin,5.70mm W X 12.90mm L X 2.03mm H Body
S020W	SOIC127P1030-20N	SOIC,1.27mm pitch,20 pin,7.50mm W X 13.00mm L X 2.65mm H Body
S024W	SOIC127P1047-24N	SOIC,1.27mm pitch,24 pin,7.60mm W X 15.85mm L X 2.64mm H Body

Land Pattern, pitch, lead span, total pin count

Dimensions

Naming Convention used by PCB Libraries

Maintenance Checking

- For new parts, make a 1:1 Xerox print of footprint and place part on it for 'general' size comparison
- If you have a lot of new parts, consider sending out a 'padmaster' board for checking the parts against
- Check gerber layer with it's associated layers
 top with solder mask top

Maintenance Saving

- Standard where parts are saved
- Multiple libraries or one within software –
 ICs, Caps, Res, Inductors, Mech, etc
 - DO NOT keep parts locally... store all in library directory
- Keep Cross Reference of packaged part to company part number

Maintenance Saving

- Make a 'known good parts' library
 Parts produced on a board, and there were no fab or assembly problems
- Permanent Network "Home" Library where Golden parts live – Read only
 - Check out/check in system

References

Gary Ferrari, Ferrari Technical Services, "Basic Printed Circuit Board Design" Presentation

Tom Hausherr, PCB Libraries, "The Future of Cad Libraries", Printed Circuit Design and Manufacture Magazine and

"Electronic Component Zero Orientation For CAD Library Construction"

IPC-2221, 2222, A-610, CM-770 and 7351

Lee Ritchey, Speeding Edge, "Padstack Design & Printed Circuit Board Stackup Generation for High Yields"

Presentation

