

Cleanliness Related Efforts in IPC Standards

Determining How Clean is Clean

Doug Pauls Rockwell Collins Chairman, Cleaning and Coating Committees

5-31: Cleaning Alternatives

• 5-31: Cleaning and Alternatives

- 5-31a Solvent Cleaning TG
 5-31b Semi-Aqueous Cleaning TG
 5-31c Aqueous Cleaning TG
 5-31c Cleaning Handbook TG
 5-31d Cleaning Handbook TG
 5-31g Stencil Cleaning Handbook
- New Revision Efforts Starting (Fall 2007)
 - Chairman, Mike Bixenman, Kyzen Corporation
 - The Cleaning Handbooks (4) are up for revision
 - All will be revised and drawn into one Handbook
 - Efforts will focus on cleaning chemistries, cleaning equipment, and how they are inter-dependent
 - Not much evolution in the semi-aqueous materials

Get Interconnected.TM

5-32: Cleanliness Assessment

• 5-32a: Ionic Conductivity/Ion Chromatography TG

- John Radman, Trace Labs; Beverly Newton, Dionex
- Present Activities
 - Round robin tests aimed at ionic test methods that are reproducible and repeatable concentration on 2.3.28
 - Beginning work on a method for Bare Board Cleanliness by IC
 - Will become IPC-Tm-650, method 2.3.28.2
 - Other potential future work for Ion Chromatography
 - Users Guide for Ion Chromatography
 - Test methodology for spot extractions
 - Test methodology for small components

5-32: Cleanliness Assessment

• 5-32b: Surface Insulation Resistance TG

- Chris Mahanna, Robisan Labs
- Present Activities
 - IPC-9201 Revision A (SIR Handbook) just published
 - Focusing on newer SIR test methodologies such as continuous monitoring, the 28 day HP test, J-STD-004 SIR flux qualification
 - Recently released method 2.6.3.7, which incorporates continuous monitoring
 - Can be used either for flux qualification or process qualification
 - Monitoring every 20 minutes for 96 hours minimum
 - Watching the Hewlett Packard 28 day electromigration test method
 - Working on accept/reject criteria for B-52 test board
 - Reviewing data from several UK/EU consortia efforts

IPC Cet Interconnected.TM

5-32: Cleanliness Assessment

• 5-32c: Bare Board Cleanliness Assessment TG

- Doug Pauls, Rockwell Collins
- Tutorial information
 - IPC-5701 Guidance for Purchasers Published
 - IPC-5702 Guidance for OEMs Published
 - IPC-5703 Cleanliness for Fabricators in draft stage
 - IPC-5704 Cleanliness Requirements for Bare Board Cleanliness draft
- Present Activities
 - Rockwell Collins IPC-B-52 Research Program
 - Bare Board Cleanliness by IC and SIR
 - Process Qualification by IC and SIR
 - Round robin studies for ion chromatography repeatability
 - Working on adopting the Delphi bare board cleanliness standard into IPC format will become IPC-5704
 - Working with ICTG on drafting the Delphi method into IPC format

5-32: Cleanliness Assessment

- 5-32e: Electrochemical Migration TG
 - Dr. Beverley Christian, RIM; Karl Sauter, Sun Microsystems
 - Responsible for:
 - All things related to electrochemical migration testing
 - Responsible for Conductive Anodic Filament (CAF) Resistance Test Method, 2.6.25 and associated Users Handbook
 - Present Activities
 - Has completed work on the CAF Resistance Method Users Handbook and has published this Handbook
 - Is reviewing data on the Hewlett Packard 28 day test method and other industry papers on CAF

Get Interconnected

methodology

Paper from Apex 2006 has details of both

- - Board designed for SIR testing

- IEC: TB-57 board (version 7.1 is current)
- Two highly similar test vehicles developed

IPC-B-52 Research Program

- IPC: IPC-B-52 board

- Most IPC/IEC test coupons (e.g. B-24 board) are designed for material qualification on a common platform
- Co-operative effort between IPC and IEC IEC efforts being led by Graham Naisbitt, Gen3 Systems and Dr. Chris Hunt, NPL

Both IEC and IPE desire a process gualification test vehicle and test

Such boards often bear no resemblance to actual product

• Product: FR-4 (T_G 170), solder mask, immersion silver

Similar to the TB-57, but with some additional coupons

• B-24: FR-4 (T_G 140), bare copper, no solder mask

IEC-TB-57 Board

IPC-B-52 Board

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

IPC

B-52 Bare Board Testing

- Free Testing Yes, it says FREE
 - Rockwell Collins will test 5 bare boards IC, SIR, adhesion
 - Nice nifty report (yet to be developed)
 - PROVIDED You supply Doug with this information
 - Who you are, e.g. Farquart J. McGillicudy III, Whozit Corp
 - Fabricator and location, e.g. CPC, Cedar Rapids, IA
 - Solder mask, e.g. Taiyo PSR-4000, Type BN
 - Surface Finish and type, e.g. MacDermid Sterling ImAg
- 3 Companies have participated so far
- This information being collected to support development of bare board cleanliness standards
 - Correlating ion chromatography data with SIR performance

Sample IC Report

RC Lab ID	Descr	F	Cl	NO2	Br	NO3	PO4	SO4	Total Halide	Total Anions
	<u>Set 2</u>									
040907-03	Sample 1	0.01	0.11	0.00	1.52	0.09	0.00	0.18	1.64	1.91
040907-04	Sample 2	0.01	0.07	0.00	0.76	0.00	0.00	0.18	0.84	1.02
040907-05	Sample 3	0.00	0.15	0.00	1.66	0.11	0.00	0.18	1.81	2.1
040907-06	Sample 4	0.01	0.09	0.00	1.17	0.07	0.00	0.18	1.27	1.52
040907-07	Sample 5	0.01	0.09	0.00	1.04	0.06	0.00	0.15	1.14	1.35
		0.01	0.10	0.00	1.00	0.07	0.00	0.17	1.24	1 50
		0.01	0.10	0.00	1.23	0.07	0.00	0.17	1.34	1.58

Sample SIR – FR4

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Sample SIR – Polyimide

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Questions?

