

JCAA/JGPP Consortia Lead Free Solder Project: High Performance Use Environment Testing Program

Dave Hillman Rockwell Collins 2007 IPC Fall Meeting

Agenda

-<u>VERY</u> Short Consortia Background

-Testing Program: Hybrids, CSPs and SMT R's & C's

-The Next Phase: NASA DoD

Background

Consortia Goals:

- Generate reliability data for circuit cards manufactured and reworked with Pb-free solders and subjected to rigorous environmental exposure conditions.
- Provide baseline data for aerospace and defense (highperformance) applications.

Key Question Being Addressed:

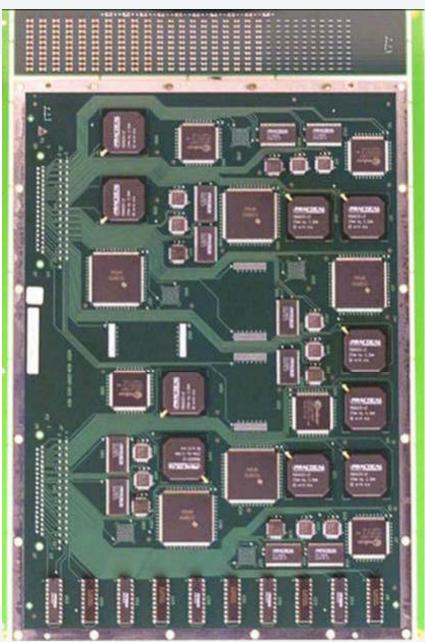
To what extent does Pb-free solder affect the solder joint reliability of high-performance electronics as compared to SnPb solder?

Background

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Test Vehicle & Solder Alloys: •Sn3.9Ag0.6Cu (SAC) for reflow and wave soldering

•Sn3.4Ag1.0Cu3.3Bi (SACB) for reflow soldering


•Sn0.7Cu0.05Ni (SNIC) for wave soldering

•Sn37Pb (SnPb) for reflow and wave soldering

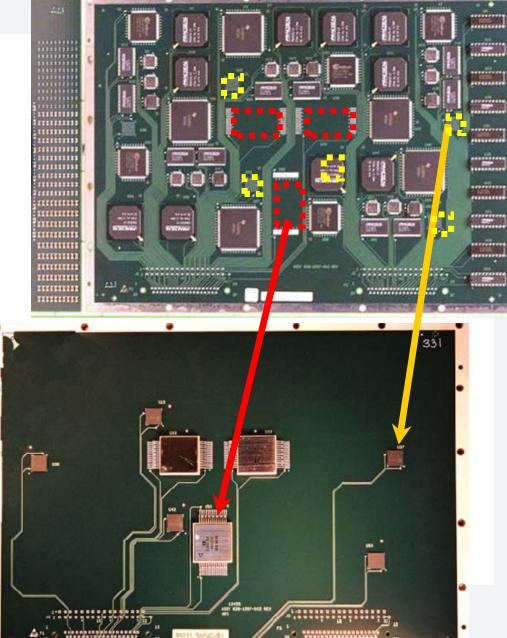
Manufactured PWBs
FR4 per IPC-4101/26 with a minimum Tg of 170°C with an immersion silver surface finish.

<u>Reworked "Legacy" PWBs</u>
FR4 per IPC-4101/21 with a minimum Tg of 140°C with a hot air, solder leveled (HASL) surface finish

	Test	Performed By
Thermal Cycle -20°C to +80°C	IPC-SM-785	Boeing-Seattle
Combined Environments Test	MIL-STD-810F, METHOD 520.2, PROCEDURE I	Raytheon
Thermal Cycle -55°C to +125°C	IPC-SM-785	Rockwell Collins
Vibration	MIL-STD-810F, METHOD 514.5, PROCEDURE I	Boeing-Seattle
Mechanical Shock Test Set I & II	MIL-STD-810F, METHOD 516.5, PROCEDURE I	ACI
Thermal Shock	MIL-STD-810F, METHOD 503.3, PROCEDURE I	Boeing-Seattle
Salt Fog	MIL-STD-810F, METHOD 509.4	ACI
Humidity	MIL-STD-810F, METHOD 507.4	ACI
SIR	IPC-TM-650, METHOD 2.6.3.3	Boeing-Anaheim
EMR	IPC-TM-650, METHOD 2.6.14.1	Boeing-Anaheim
		Rockwell Collins

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®



Primary test vehicle

Assemblies

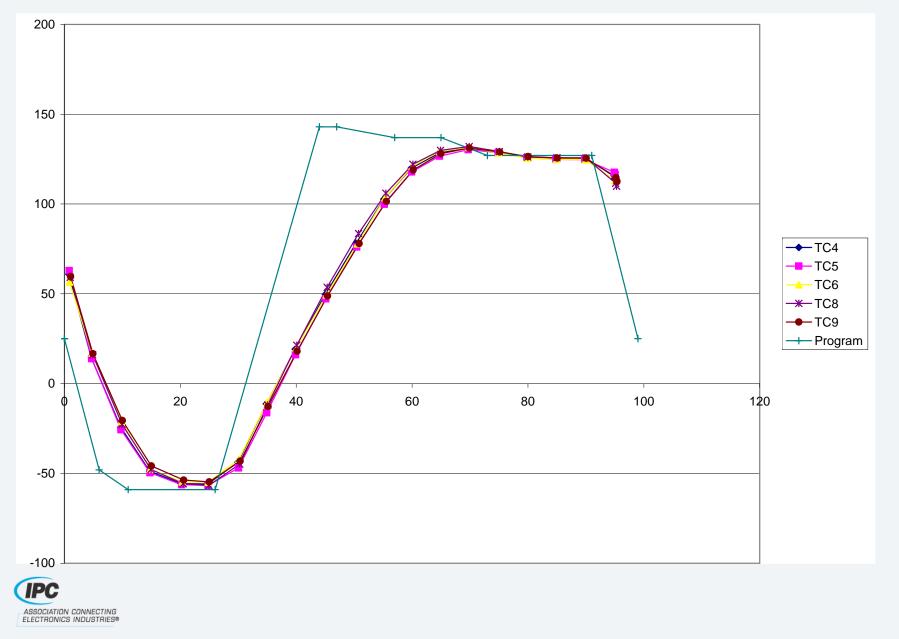
- 119 Manufactured
- 89 Reworked (Legacy)
 - 30 CSP and Hybrid

CSP & Hybrids test vehicle

Components

Component Type	Component Finish	
Hybrid	SnPb	
	SAC	
	SACB	
CSP	SnPb	
	SnAgCu (SAC405)	
0402 Capacitors	Sn	
0805 Capacitors	Sn	
1206 Capacitors	Sn	
1206 Resistor	Sn	

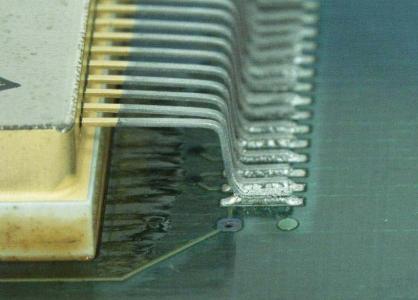
Thermal Cycle Testing Methodology:


- In Accordance with IPC-9701
- Temperature Extremes: -55° C and +125° C
- Temperature Ramp: 5° C-10° C per minute maximum
- Temperature Dwells: 10 minutes @ -55° C & 30 minutes @ +125° C
- <u>Continuous Monitoring with Event Detector:</u>
 - An Event = channel resistance exceeded 300 Ω for longer than 0.2 µsec within a 30-second period
- <u>A failure was defined when a component either:</u>
 - 15 consecutive maximum resistance events,
 - 5 consecutive detection events within 10% of current life, or
 - Became electrically open

Testing Program

IPC

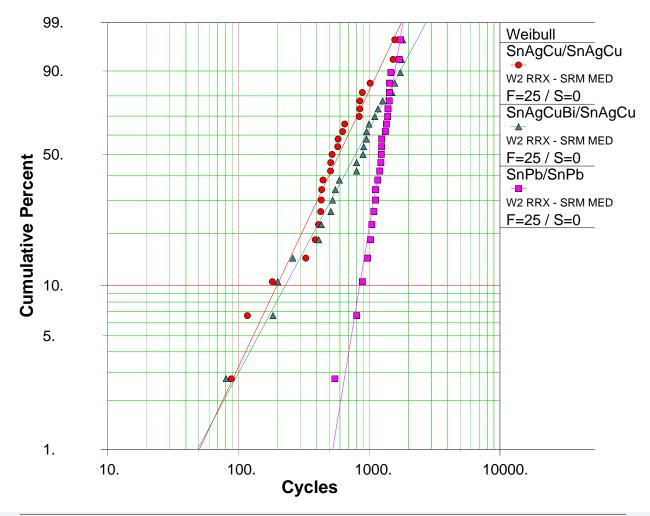
Thermal Cycle Results:


4698 Total Thermal Cycles Completed

•12 months of Testing !!!

Component Type	Total Failures	Total Population	Percent Failed
Hybrid	4	45	8.8
CSP	74	74	100
SMT Resistor	107	170	63
SMT Capacitor	NA	NA	NA

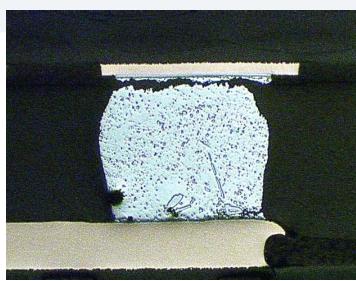
Failure Analysis Results: Hybrid Components


IPC

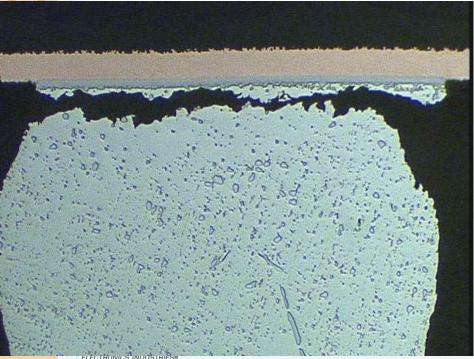
ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

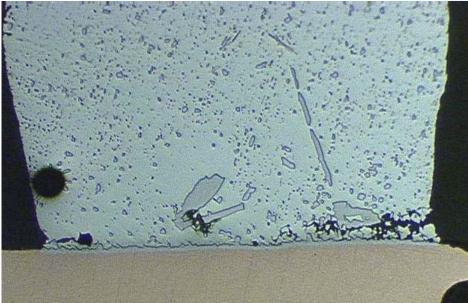
Test Vehicle 307 Hybrid U33, Tin/Lead Solder After 4478 Total Cycles

Failure Analysis Results: CSP Components

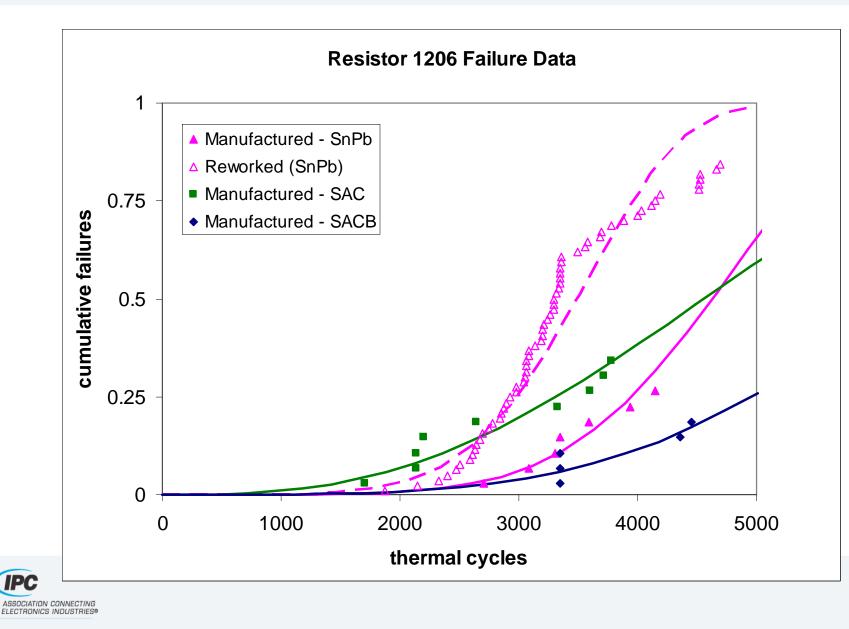

β1=1.7258, η1=730.5747, ρ=0.9778

 $\beta 2=1.5258$, $\eta 2=1003.0968$, $\rho=0.9911$ Key: Solder Alloy/Component Finish β3=4.9621, η3=1335.8406, ρ=0.9806





Failure Analysis Results: CSP Components


CSP Component U36, SAC Test Vehicle 317, 89 Total Thermal Cycles

SMT Resistors

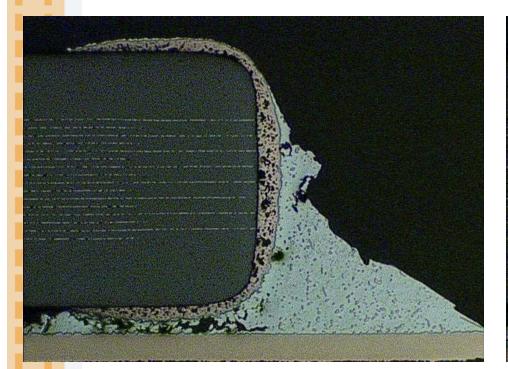
SMT Resistors

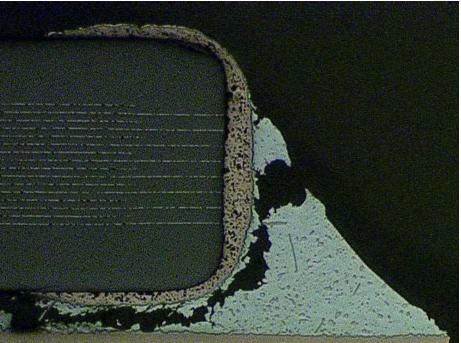
Solder	Manufactured		Reworked	
Alloy	slope	N_63	slope	N_63
SACB	3.98	6775	NA	NA
SnPb	5.56	4943	5.59	3734
SAC	2.76	5199	NA	NA

Two Parameter Weibull Values for SMT Resistors Note: The Term "Rework" Means a Legacy laminate

SMT Resistors

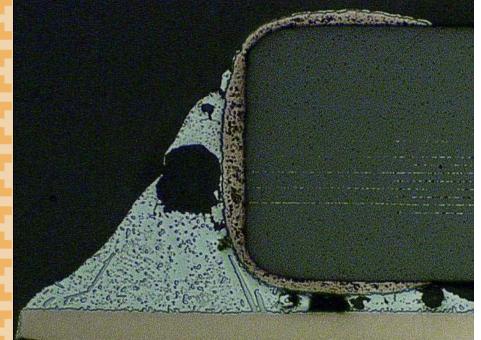
SAC

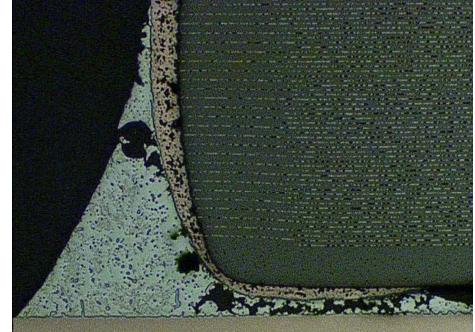



SnPb

SMT Capacitors

Capacitors began failing between 2203-3342 thermal cycles


Size: 0805, Alloy: SAC, Cycles: 2203


ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES® Size: 0805, Alloy: SAC, Cycles: 3342

SMT Capacitors

Capacitors began failing between 2203-3342 thermal cycles

Size: 1206, Alloy: SACB, Cycles: 2203

> ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Size: 1206, Alloy: SACB, Cycles: 3342

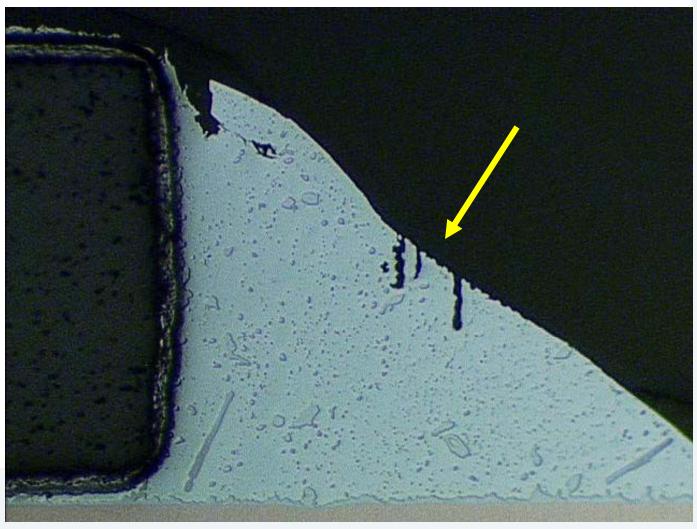
SMT Capacitors

Capacitors began failing between 2203-3342 thermal cycles

Size: 1206, Alloy: SnPb, Cycles: 2203

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES® Size: 1206, Alloy: SnPb, Cycles: 3342


IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

SMT Capacitors

 SMT 0603 Capacitor, SAC Test Vehicle 88, 2203 Total Thermal Cycles: Shrinkage Voids in Solder Joint Not Acting As Crack Initiation Locations

Relative Solder Performance				
Component	Solder/Component Finish	1st Failure	N10	N63
	SnPb/SnPb	0	0	0
	SAC/SAC			
CSP	SACB/SACB			
	SnPb/SnPb	0	0	0
	SAC/SAC	++	++	++
Hybrid	SACB/SACB	++	++	++
	SnPb/Sn (Tg – 170°C)	0	0	0
	SnPb/Sn (Tg – 140°C)			
	SAC/ Sn			+
SMT Resistors	SACB/ Sn	++	+	++
	SnPb/ Sn	NA	NA	NA
	SAC/ Sn	NA	NA	NA
SMT Capacitors	SACB/ Sn	NA	NA	NA

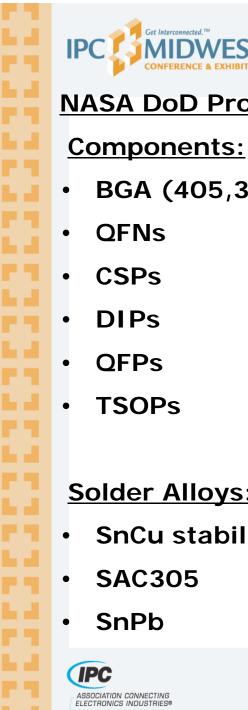
Legend:

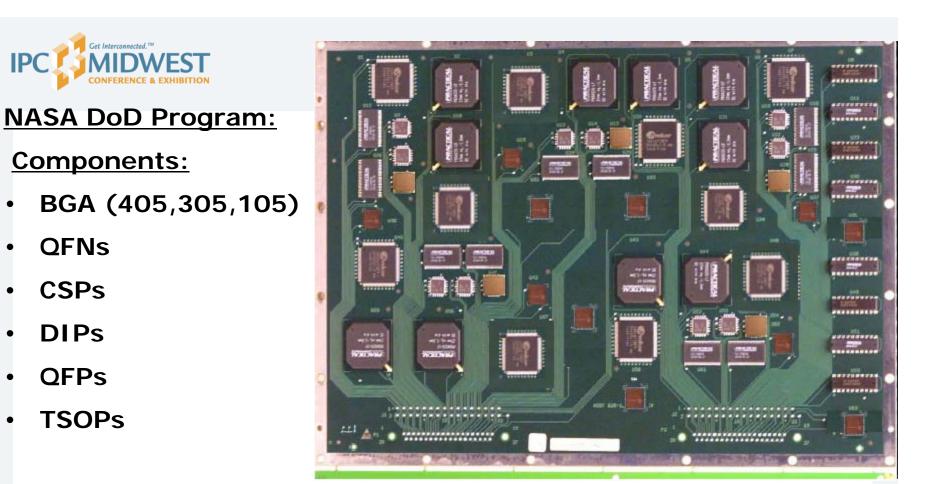
0 = Same as control or <5% difference

- = -5 to -20%

-- = >-20% (red if much greater than -20%)

NA = Not Available (not enough failures)


Weblink Information:


JCAA/JGPP Consortia Joint Test Report (JTP) Contains Final Report and Data

Weblink: http://acqp2.nasa.gov/LFS.htm

NASA DoD Phase II POC Kurt Kessel Phone: (321) 867-8480 Email: Kurt.Kessel-1@ksc.nasa.gov

Solder Alloys:

Get Interconnected.™

- SnCu stabilized (SNIC)
- **SAC305**

QFNs

CSPs

DIPs

QFPs

TSOPs

SnPb

Investigation Focus:

Mixed Metallurgy and Rework **Topics**

This is categorized as an issue!