HK Lee, YC Chu, MH Chun, SH Jeon and KH Kim R&D center, DUKSAN HI-METAL CO., LTD

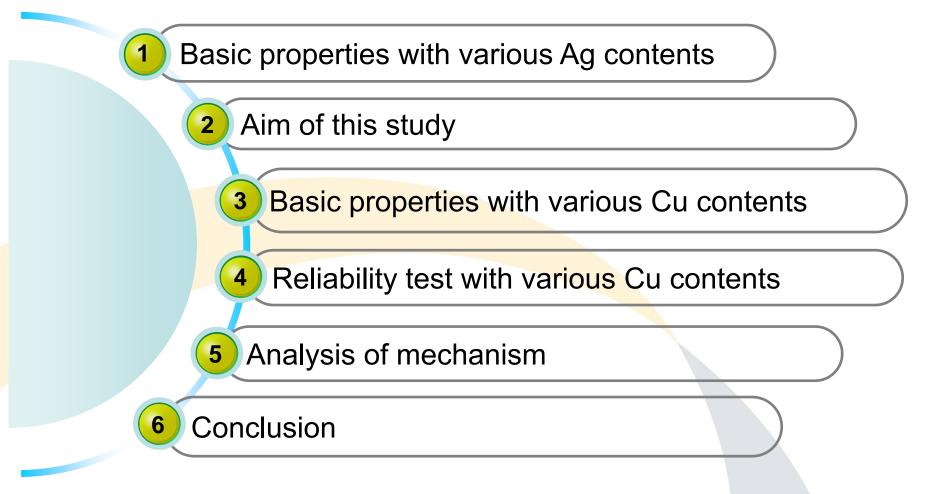
EXECUTIVE SUMMARY

The low Ag solder alloy shows higher drop performance than the high Ag solder alloy in the every kind of package and board combinations. This is related to the ductility of solder and the surface between solder and pad.

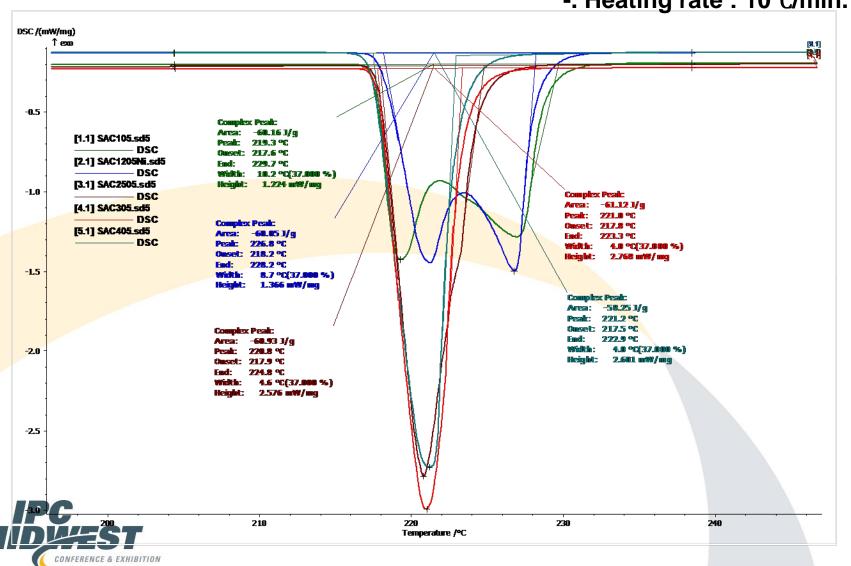
The unstable interface exists in IMC, pad material, and solder bulk, aroused by the lattice mismatch, which enables the thermal and physical stress due to the continuous exterior shock to transfer to the IMC interface. Therefore, it must be strongly requested to control solder morphology, and also shape and thickness of IMC for improving the solder reliability.

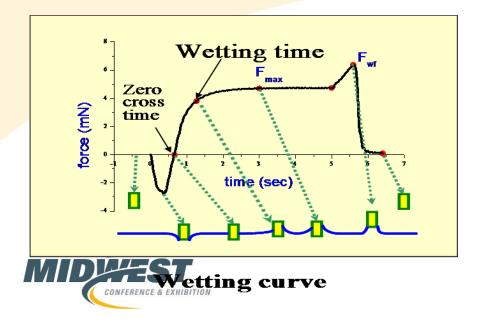
Furthermore, the solder alloy with high Cu shows good drop performance. We can analogize from this Cu performance that high Cu plays an important role in relieving the brittle surface, such as Ni-P layer, being appeared on electro-less pad after reflow.

A study of reliability between solder alloy and pad materials


DIV. R&D

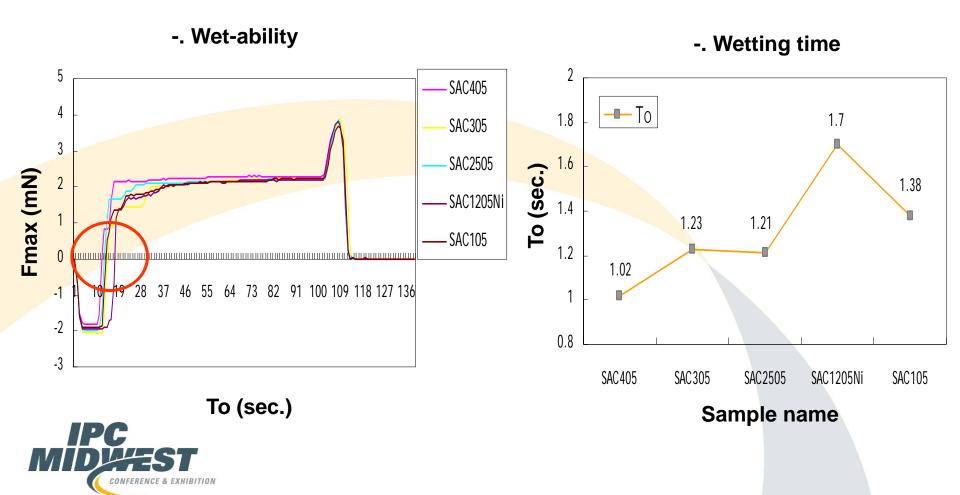
DUKSAN HI-METAL Co., LTD

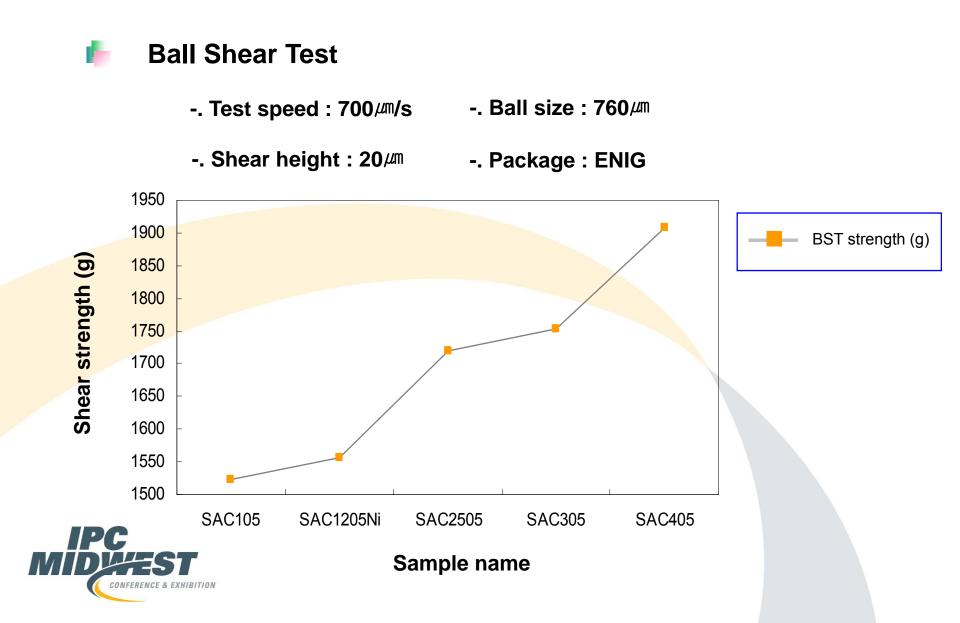

597-3, yeonam-dong, Buk-gu, Ulsan, 683-804 KOREA



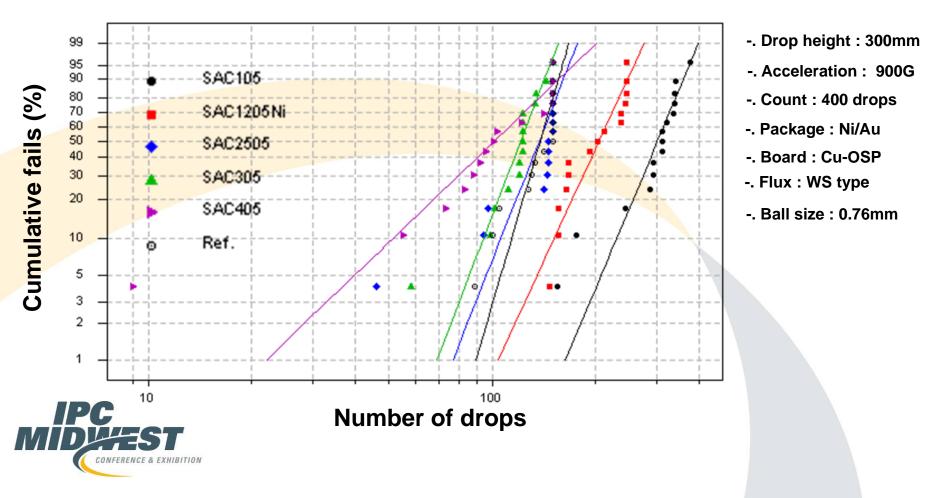
-. Heating rate : 10°C/min.

Test condition


Test sample	Flux	Temp.	# of test	Test machine	Remark
Variable Ag contents	WS-type	240 °C	3	Malcom. SP-2	J-STD-002B


- Test coupon : Cu-OSP treatment (0.2*3*10mm)

- 1. F_{max}: Max. wetting force.
- 2. F_{end} : Finish wetting force.
- 3. T_0 : Time to buoyancy corrected zero.
- 4. T_1 : The time taken to reach 2/3 of the maximum force during the test.
- 5. Sb : Wetting stability. Fend / Fmax


Wet-ability test

Drop strength

- -. The acceleration reaches about 900G (\pm 50) upon impact. (activated time : about 0.7msec)
- -. Drop shock failure result is analyzed by Weibull method.

Properties of variable compositional solder alloy

Composition	Shear strength	Pull strength	Hardness	Wet- ability	Mush Zone	Drop strength	Thermal cycling	Extrude Ag₃Sn	Remarks
SAC105	Weak	Weak	Weak	Worse	Wide	Good	Worse	Weak	Good for Ni/Au pad
SAC1205- 0.05Ni				Worse	Wide	Good	Worse		Good for Cu-osp pad
SAC2505				Good	Narrow	Good	Good		
SAC305				Good	Narrow	Worse	Good		
SAC3505				Good	Narrow	Worse	Good		
SAC405	Strong	Strong	Strong	Good	Narrow	worse	Good	Extrude	

A study of reliability between solder alloy and pad materials

Aim of this study

	Electroless Ni plating (ENIG)	Electroless Pd plating (ENEPIG)
Merit	 Widely & generally used. Good shelf life (~12 months). Handling tolerance. 	 Excellent solder-ability. Good shelf life (~12 months). Conductive surface for electrical test.
Demerit	 Industry variations due to different process chemistries. The most challenging PCB process requires sophisticated controls. 	 Solder joint strength is highly Pd thickness dependent. Process complexity-over and above ENIG complexity.

-. It is a very difficult to control Ni-P layer to be shaped after reflow

-. We need to develop solder ball, which controlled the Ni-P layer,

to improve the solder reliability.

Method for developing

Solder ball	T	Test m		
	Test items		Model (maker)	Test condition
	Solder ball Image	Optical spectrometer	(OLYMPUS)	X500, X1,000
	Discoloring test	Reflow oven	1707EXL (HELLER)	Peak temp. : 240°C
	DSC test	DSC	DSC200F3 (NETZSCH)	Heating rate : 10°C/mir
	Wetting test	Wet-ability test	SP-2 (MALCOM)	Bath temp. : 240°C
Variable Ag contents solder	Hardness test	Micro hardness	FM-700 (FUTURE-TECH)	100g X 30 sec.
ball	Ball shear test	BST	DAGE 4000series (DAGE)	Speed : 700um/sec Height : 20um
	Drop strength	Drop tester	SD10 (LAB)	Acceleration : 1,500G
	Thermal cycling test	TC test	JYT-S-100 (JINYOUNG)	-40°C ∼ 125°C
	IMC observation	FE-SEM	JEOL 6500F	X3,000

Test leg

Test Ite	em	Surface finish	Solder ball	Size	Туре
Packago lovol	IMC	ENIG, ENEPIG	Sn 1.0Ag Sn 1.0Ag 0.5Cu Sn 1.0Ag 1.0Cu Sn 1.0Ag 1.5Cu		1. ENEPIG (P*) - OSP(B*) 2. ENIG (P) - OSP(B)
Package level Shear	Shear			0.45 mm	
Board level	Drop			0.45 mm	
	F/M		Sn 3.0Ag 0.5Cu		

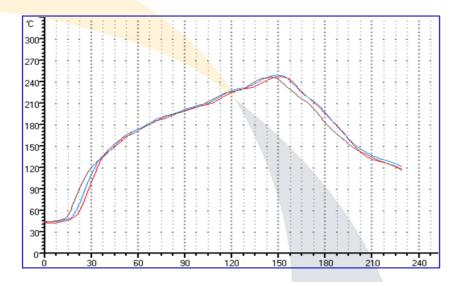
P* : Package (Pad), B* : Board

ENEPIG pad spec.

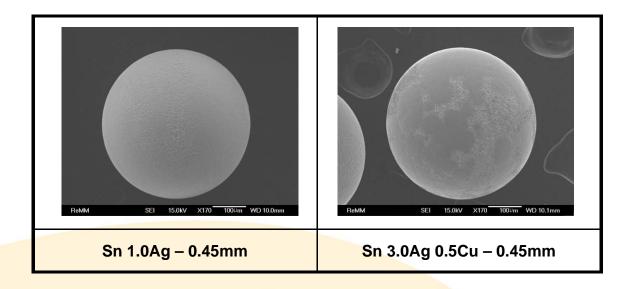
-. Model : CM1900

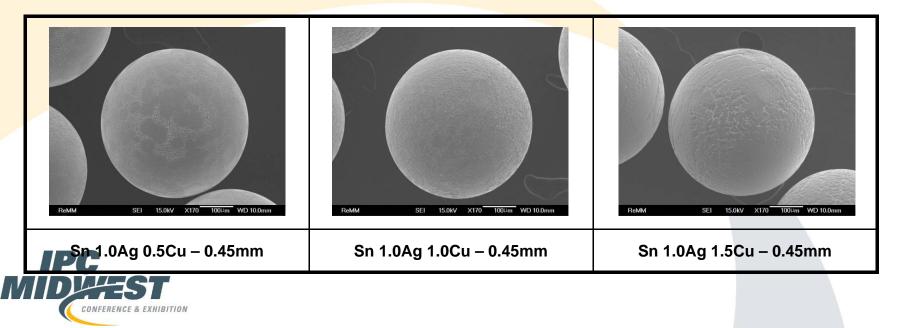
	Au (um)	Pd (um)	NiP (um)
Group	10	10	10
Ave.	0.072	0.112	5.712
Min.	0.068	0.108	5.544
Max.	0.076	0.116	5.943
Std.	0.002	0.003	0.161

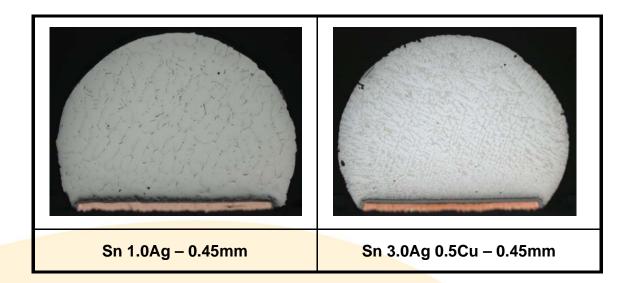
Ball assembly condition

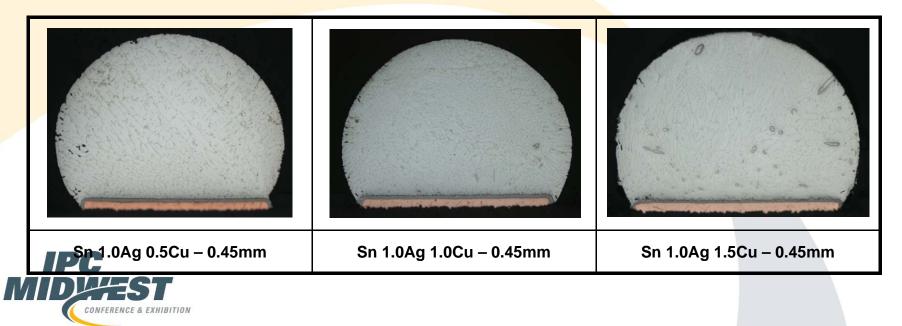


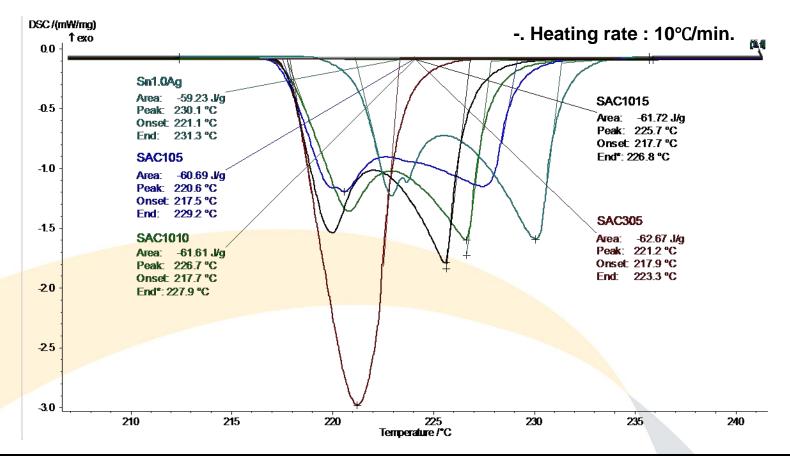
-. Model : HELLER 1707 EXL



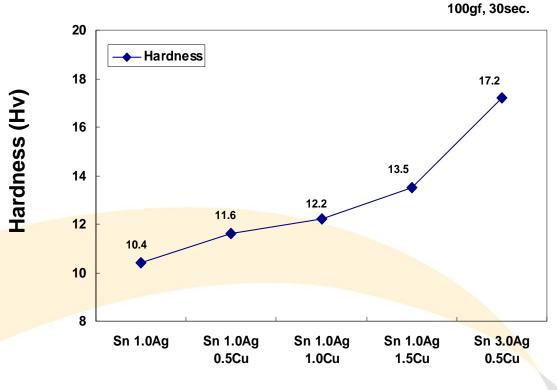

- -. Dwell time : 50 ~ 55 sec
- -. Belt speed : 70 cm/min
- -. Flux: WF6063M5 (Water soluble)




Surface image



Solder bump morphology



DSC curve

		On set (°C)	End (°C)	Peak temp. (°C)	Melting range (°C)
	Sn 1.0Ag	221.1	231.1	230.1	221.1 ~ 231.1
	Sn 1.0Ag 0.5Cu	217.5	229.2	220.6	217.5 ~ 229.2
	Sn 1.0Ag 1.0Cu	217.7	227.9	226.7	217.7 ~ 227.9
Ť	Sn 1.0Ag 1.5Cu	217.7	226.8	225.7	217.7 ~ 226.8
	Sn 3.0Ag 0.5Cu	217.9	223.3	221.2	217.9 ~ 223.3

Hardness

Sample name

-. Sn 3.0Ag 0.5Cu solder has more hardness than others.

-. In case of low Ag, the more Cu contents increase, the more hardness increases.

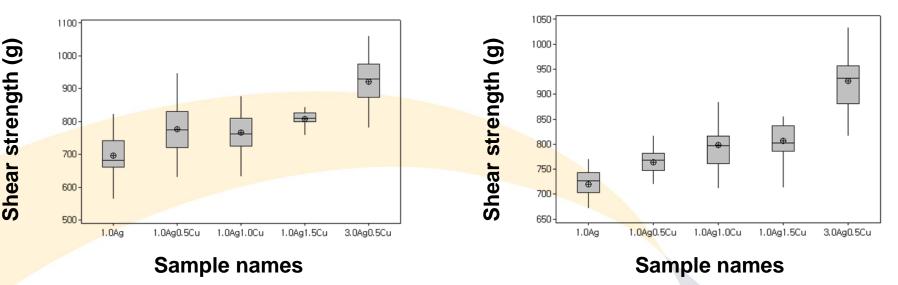
Inter-metallic compound

	Sn 1.0Ag	Sn 1.0Ag 0.5Cu	Sn 1.0Ag 1.0Cu	Sn 1.0Ag 1.5Cu	Sn 3.0Ag 0.5Cu
ENIG finished	BAMM COMPO 15/04 V 55/00 10/07 WO 16/04/01	PAM COMPO 15.04V 25.000 14m W0180hmm	Ram COMPO 15/04 25/00 11/m WD 2/mm	ReAM COMPO 15/04 X5/00 Tim WD Robum	BalM COMPO 15.64 95.000 Non WD 10.0mm
ENEPIG finished	RAMA COMPO 15/04 35,000 10m W 10.00m	Пими СОМРО 16/04 У 20/00 10/10 W 10/10/10	RAM COMPO_156AV_36200 1/m W110.1mm	PAM COMPD 15.647 26.00 Tum WD 10.0mm	RAM COMPO 15.64 X5.000 10m WD 10.3mm

-. It shows the different IMC shape according to the combinations of

various pad finished and solder compositions.

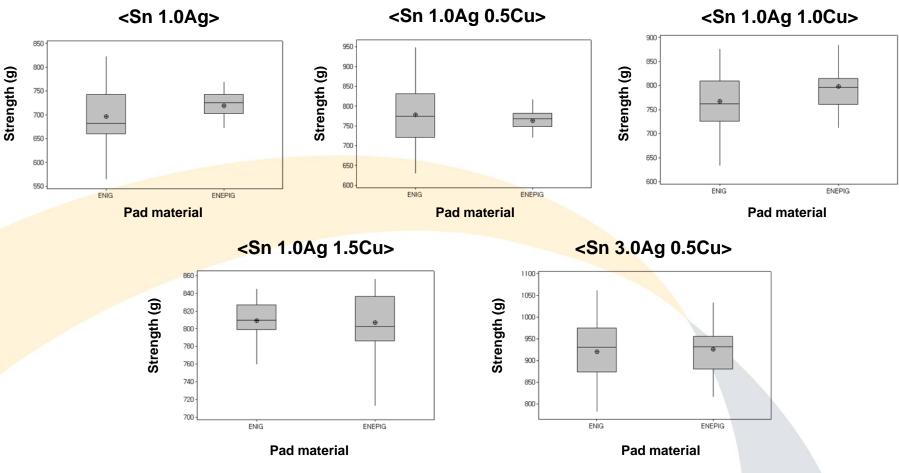
- -. The Ni-P layer on ENEPIG finished shows more uniform shape than that of ENIG finished shows.
- -. The inter-metallic compounds are composed of (Cu,Ni)₆Sn₅ and Ni₃Sn₄.


Ball shear strength

-. Test speed : 300μ /m/s -. Shear height : 20μ

-. Ball size : 0.45mm

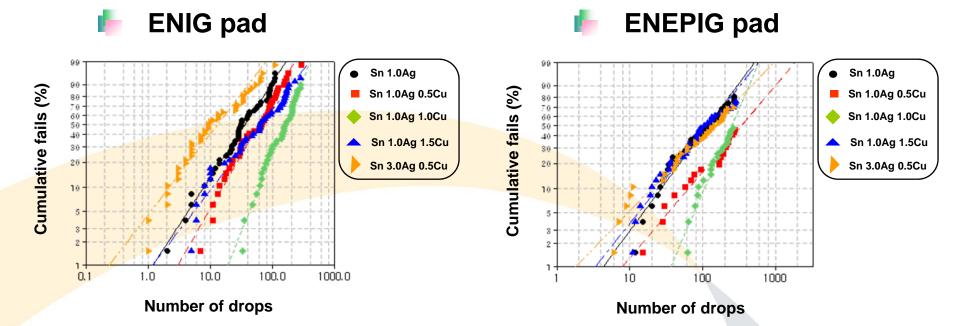
ENEPIG pad



- -. Sn 3.0Ag 0.5Cu solder has more strength than others.
- -. In case of low Ag, the more Cu contents increase, the more strength increases.

Ball shear strength

Comparison ENIG with ENEPIG.

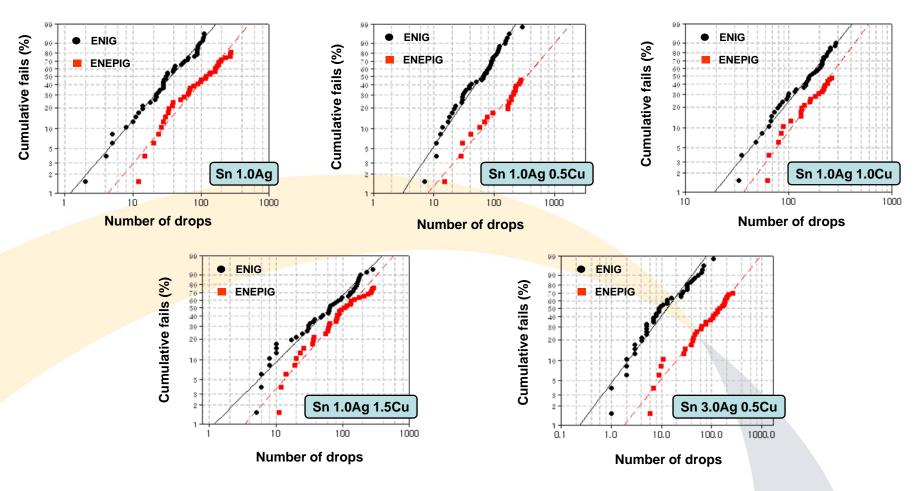

-. The shear strength has a similar regardless of pad finished.

High drop performance

Test machine			Tes	st condi	tion	
Model :) /					
SD10 (LAB)				Con	ditions	
			Machine		SD-10 (LA	3)
		Test Conditions	Accelera tion		1500 G	
			Count		300 times	5
Drop condition : JESD22-B111			Package	Board	Unit No	15 units /
		Packages	ENIG, ENEPIG	OSP	45 units	Leg X 3
			Sn 1.0Ag, Sn 1.0Ag 0.5Cu			
		Solder Alloys	Sn	1.0Ag 1.0Cu, Sn 1.0Ag 1.5Cu		
илинание и и Илинание илинание и илин				Sn 3.0	Ag 0.5Cu	
		* All sa	amples h	ave beer	n assemb	oled
Drop Test Board	/ \				by DSH	IM std.
CONFERENCE & EXHIBITION						

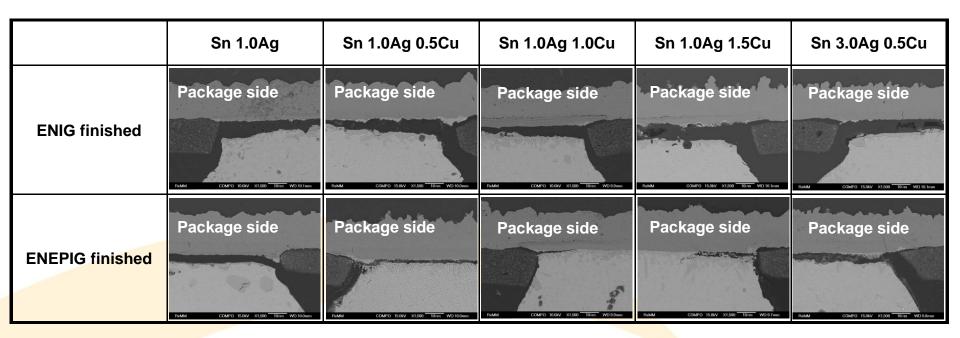
Weibull plot of test result

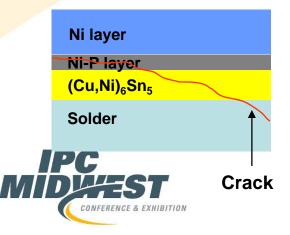
-. Drop shock failure result is analyzed by Weibull method.



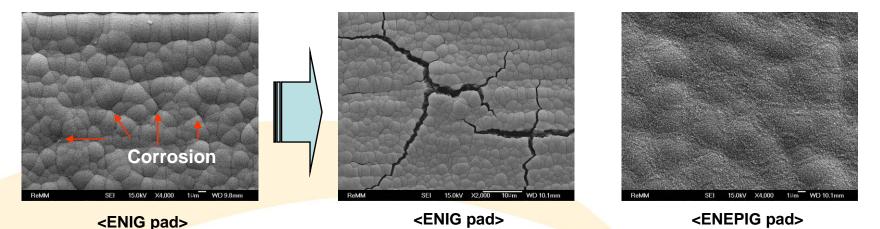
-. Sn 1.0Ag 1.0Cu solder has the best drop performance.

Weibull plot of test result




-. ENEPIG pad has better reliability than ENIG pad.

Fracture mode after drop strength



-. Crack propagates along with the P containing IMC on package side (Interfacial Fracture Mode)

The reason why ENEPIG pad shows high drop performance than ENIG pad

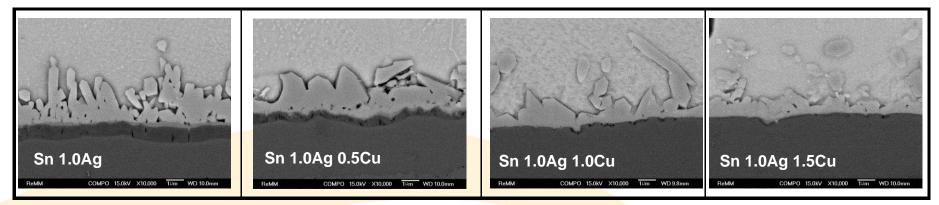
1. Gold layer was dissolved by a selective stripping solution.

2. There were inter-granular corrosion dregs of Ni oxide in ENIG pad,

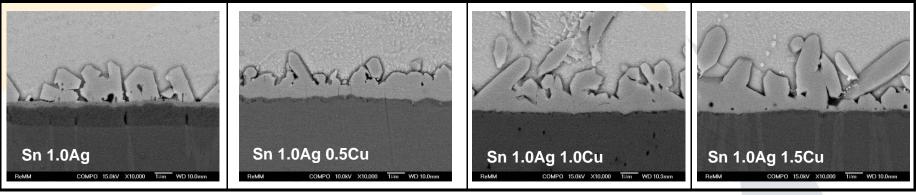
being caused by electric potential between Au and Ni.

<Chemical reaction equation \rightarrow Ni + 2Au⁻ = Ni²⁺ + 2Au>

3. In case of ENEPIG pad, this surface was similar to that of ENIG pad


but, there was no corrosion under the ENEPIG pad.

PC4. Ni-P layer on ENEPIG pad after reflow is thinner than that of ENIG pad.


The reason why Sn 1.0Ag 1.0Cu shows high drop performance than others.

1. Ni-P layer thickness according to Cu contents.

<ENIG pad>

<ENEPIG pad>

The reason why Sn 1.0Ag 1.0Cu shows high drop performance than others.

2. The more cu contents increase, the more Ni-P layer decreases.

3. Cu in solder delays the dissolution rate of Cu from boards to solder side

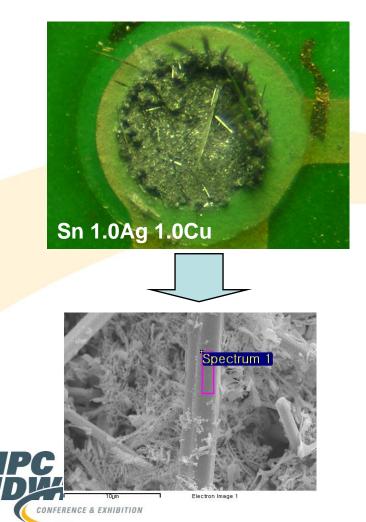
And vice Versa.

4. Cu prevents Ni-P accumulation at the solder joint by fast Cu₆Sn₅ formation

because less Ni participated in Cu-Ni-Sn IMCs formation.

5. High Cu contents more than 1.2wt% shows the negative influence to the reliability.

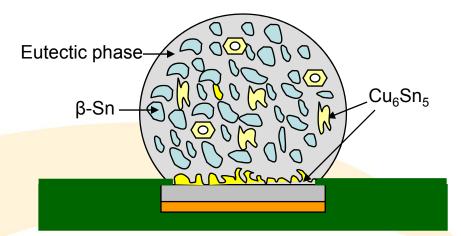
The Cu above the limited solubility caused to increase the precipitation Hardening.


These behaviors in the ductile solder are interrupted to dissipate more energy

during plastic deformation.

The reason why Sn 1.0Ag 1.0Cu shows high drop performance than others.

<Top view photo after 6times reflow>



N	0	Sn	Ag	Cu	Ni
1.85	7.01	54.98	1.60	32.78	1.78

-. Rod type IMC is composed of (Cu,Ni)₆Sn₅.

The reason why Sn 1.0Ag 1.0Cu shows high drop performance than others.

<Microstructure in solder : Sn 1.0Ag 1.0Cu>

-. Dispersed Cu accelerates nucleation site.

-. These behaviors make the fine grains and controls the IMC shapes & thickness even though Cu contents are high.

-. Fine grain and dispersed IMC(Cu₆Sn₅)s interrupt to dislocation behavior.

Effect of precipitation hardening.

-. Rod (needle) type IMCs interrupt to crack propagation.

Conclusion

- 1. It shows the different IMC shape according to the pad finished and solder composition.
- 2. The inter-metallic compounds are composed of $(Cu,Ni)_6Sn_5$ and Ni_3Sn_4 .
- 3. The Ni-P layer on ENEPIG finished shows more uniformed shape than that of ENIG finished.
- 4. ENEPIG pad has better reliability than ENIG pad.
 - 4.1. There were inter-granular corrosion dregs of Ni oxide in ENIG pad,

being caused by electric potential between Au and Ni.

4.2. In case of ENEPIG pad, this surface was similar to that of ENIG pad

but, there was no corrosion under the ENEPIG pad.

Conclusion

5. The reason why Sn 1.0Ag 1.0Cu shows high drop performance than others.

5.1. Cu prevents Ni-P accumulation at the solder joint by fast Cu6Sn5 formation

because less Ni participated in Cu-Ni-Sn IMCs formation.

5.2. Effect of precipitation hardening.

6. High Cu contents above about 1.2wt% shows negative influence to the reliability.

6.1. The Cu above the limited solubility caused to increase the precipitation Hardening.

6.2. These behaviors in the ductile solder are interrupted to dissipate more energy

during plastic deformation.

We need to control the Cu contents (from 1.0 to 1.2wt%) to increase the reliability.