Predictor Model ... Round Robin

Tom Clifford TJB Associates Half Moon Bay, CA

EXECUTIVE SUMMARY

Solder joints tend to crack after extended thermal cycling, if the component and the circuit board are CTE mis-matched. Predicting this t-cycle lifetime is critical in optimizing product design or in-service conditions. Predictor models embody cyclic fatigue physics and math, and require inputs of the materials and geometry of the hardware, as well as the thermal conditions of the environment. The output is the predicted number of t-cycles to fail (i.e. to develop electrical-open cracks thru the solder-joint). Several predictor models are in use within the industry. All have strengths and weaknesses, and offer different results. This paper compares several models, rating them for ease of use, and for accuracy against actual test results and against each other. The study uses a round-robin approach; wherein each participant was given the same input data for ten different components, but the actual were withheld until the respective predictor results were in. Also, this paper describes a related study on the ability of each model to perform parametric analyses: i.e. to define the effect on t-cycle life of variations in hardware and environmental conditions. The results offer guidance on selecting models for t-cycle life prediction, as well as on understanding options for improving t-cycle life.

PREDICTOR MODEL ... ROUND ROBIN

TOM CLIFFORD

CONTENT

2) WHY COMPARE PREDICTOR MODELS?

5) RESULTS, COMPARISONS, CONCLUSIONS

1) WHAT IS A PREDICTOR MODEL?

3) WHY USE A "ROUND ROBIN" ?

4) THIS STUDY: GROUND RULES

7) CONCLUSIONS, AND Q & A

6) PARAMETRIC STUDY AND RESULTS

CONTENT

2) WHY COMPARE PREDICTOR MODELS?

5) RESULTS, COMPARISONS, CONCLUSIONS

1) WHAT IS A PREDICTOR MODEL?

3) WHY USE A "ROUND ROBIN" ?

4) THIS STUDY: GROUND RULES

7) CONCLUSIONS, AND Q & A

6) PARAMETRIC STUDY AND RESULTS

WHAT IS A PREDICTOR MODEL?

PREDICTS THERMAL-CYCLE LIFE (... CYCLES TO FAILURE...) FROM SCRATCH: INPUTS ARE HARDWARE DESCRIPTION AND CONDITIONS.

HANDLES CLASSIC CYCLIC-FATIGUE-FAILURE, THRU THE SOLDER-JOINT, DUE TO CTE-MISMATCH.

DOES NOT HANDLE PREMATURE FAILURES AT INTERFACES, LIKE BLACK-PAD OR VOIDS, etc DOES NOT HANDLE OTHER FAILURE MODES SUCH AS IMPACT.... OR CONTRIBUTING FACTORS LIKE WARPING OF COMPONENT OR PWB.

7) CONCLUSIONS, AND Q & A

- 6) PARAMETRIC STUDY AND RESULTS
- 5) RESULTS, COMPARISONS, CONCLUSIONS
- 4) THIS STUDY: GROUND RULES
- 3) WHY USE A "ROUND ROBIN" ?
- 2) WHY COMPARE PREDICTOR MODELS?
- 1) WHAT IS A PREDICTOR MODEL?

CONTENT

WHY COMPARE PREDICTOR MODELS

1) DESIGNERS NEED TO PREDICT LIFE, TO ASSURE RELIABLE PRODUCT APPLICATION. THAT'S CRITICAL. PREDICTION, FROM SCRATCH, IS VERY DIFFICULT.

2) MOST DESIGNERS ARE DISTRACTED, IMMERSED IN A MILLION OTHER DETAILS, AND ARE NOT EQUIPPED OR FUNDED TO DEVELOP EXPERTISE.

3) THEY NEED A DESK-TOP, INTUITIVE, USER-FRIENDLY RESOURCE TO TO ARRIVE AT A T-CYCLE LIFE PREDICTION.

4) SEVERAL MODELS AND RESOURCES ARE IN USE AND AVAILABLE, COMMERCIAL AND IN-HOUSE. MOST REQUIRE HIGH SKILL LEVEL.
5) MUST SELECT AND COMMIT TO ACQUISITION AND TRAINING.
6) COMPARISON OF AVAILABLE MODELS IS A GOOD START.

7) CONCLUSIONS, AND Q & A

- 6) PARAMETRIC STUDY AND RESULTS
- 5) RESULTS, COMPARISONS, CONCLUSIONS
- 4) THIS STUDY: GROUND RULES
- 3) WHY USE A "ROUND ROBIN" ?
- 2) WHY COMPARE PREDICTOR MODELS?
- 1) WHAT IS A PREDICTOR MODEL?

CONTENT

WHY USE A "ROUND ROBIN" ?

A "ROUND ROBIN" IS THE CLASSIC METHOD TO COMPARE LABS, OR INSTRUMENTS, OR SKILLS.

ALL PARTICIPANTS ARE GIVEN THE SAME "UNKNOWN". THEY ANALYZE THIS "UNKNOWN" INDEPENDENTLY. (THE "ACTUAL" VALUE IS NOT PROVIDED TO THE PARTICIPANTS UP-FRONT)

RESULTS ARE THEN SHARED, COMPARED. AND DISCUSSED.

7) CONCLUSIONS, AND Q & A

5) RESULTS, COMPARISONS, CONCLUSIONS

6) PARAMETRIC STUDY AND RESULTS

- 4) THIS STUDY: GROUND RULES
- 3) WHY USE A "ROUND ROBIN" ?
- 2) WHY COMPARE PREDICTOR MODELS?
- 1) WHAT IS A PREDICTOR MODEL?

CONTENT

THIS STUDY: GROUND RULES

* TEN WELL-CHARACTERIZED COMPONENTS WERE CHOSEN, FOR WHICH THERE WAS CREDIBLE ACTUAL T-CYCLE LIFE.

* THESE COMPONENTS SPANNED A WIDE RANGE OF GEOMETRIES.

- * ALL WERE MOUNTED ON MULTILAYER POLYIMIDE PWB.
- * ALL INVOLVED Sn63 PLATINGS AND FINISHES.
- * ALL WERE TESTED AT THE SAME TIME.
- * PROPER STATISTICS, SAMPLE-SIZE, DATA-REDUCTION

* "FAILURE TIME" IS DEFINED AS NUMBER OF CYCLES AT THE POINT THAT CRACKS PROPAGATED THRU 100% OF THE FRACTURE-PLANE AREA.

THIS STUDY: GROUND RULES (contd)

* PARTICIPANT VOLUNTEERS SPANNED SEVERAL MIL-AERO ORGANIZATIONS AND LABS.

* EACH PARTICIPANT WAS TO USE HIS OWN PREDICTOR MODEL. SEVERAL PREDICTOR MODELS WERE INCLUDED.

* THE STUDY MANAGER (ME), HAD NO INTEREST OR INPUT INTO THE TYPE, DETAILS, OR OPERATION OF THE PARTICIPANTS' MODELS.

* EACH PARTICIPANT WAS PROVIDED THE SAME SUITE OF AVAILABLE INFORMATION ON EACH COMPONENT.

* EACH PARTICIPANT WAS PROVIDED THE SAME SET OF CONDITIONS (TEMPERATURE EXTREMES AND RAMPS AND DWELLS): IDENTICAL TO THE T-CYCLE TEST CONDITIONS USED TO OBTAIN THE ACTUAL TEST DATA.

* STUDY WAS INITIATED ... RESULTS OBTAINED ... AND COMPARED

GROUND RULES (contd) NOTE THE PREMISES:

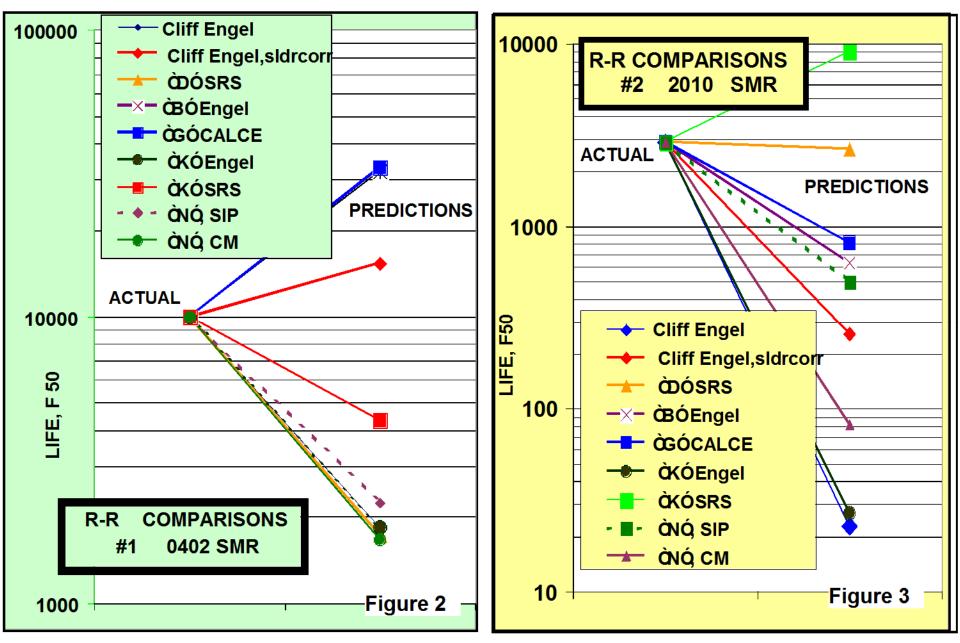
- 1) A PREDICTOR MODEL THAT CAN ACCURATELY PREDICT THE LIFE IN AN ACCELERATED T-CYCLE TEST (ie -10C to + 125C, 30 minute ramps and 30 minute dwells) SHOULD BE ABLE TO SIMILARLY PREDICT THE FIELD-SERVICE LIFE (example 10 C to 30 C, 120 minute ramps, 240 minute dwells).
- 2) IT'S VIRTUALLY IMPOSSIBLE TO DO A RATIONAL, STATISTICALLY-VALID, REAL-WORLD, T-CYCLE "TEST"... SPANNING MANY YEARS AND MANY TENS OF THOUSANDS OF CYCLES.
- 3) THEREFORE, WE COMPARE THE MODELS BASED ON THEIR ABILITY TO PREDICT ACTUAL KNOWN <u>TEST</u> T-CYCLE LIFE.

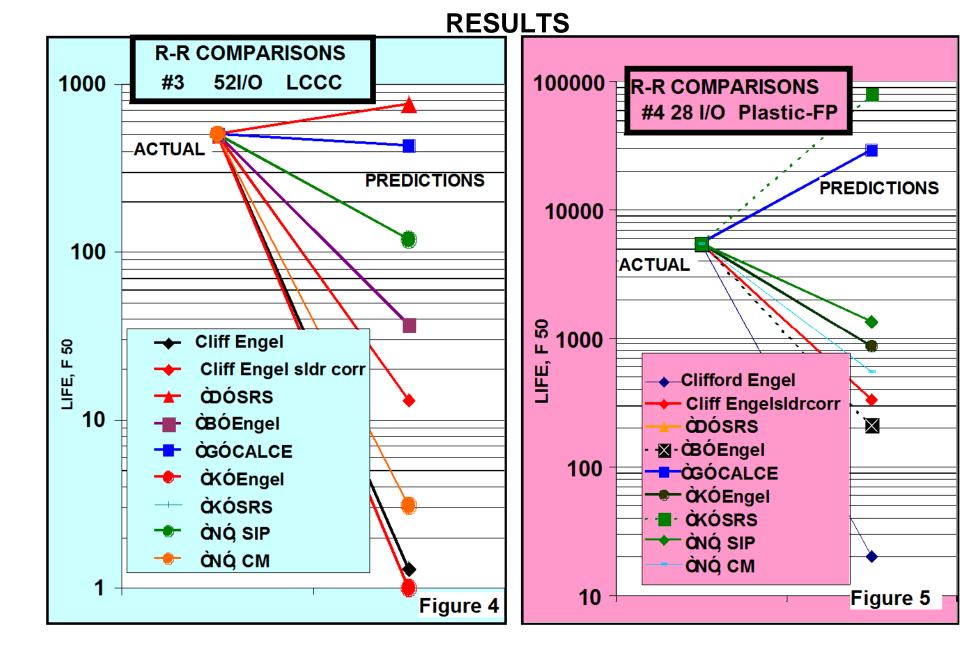
	Details o	of Components É. Predictor Model Round Robin Table 1									
#	description	dimensional details (dims in mils)	CTE (1)								
-0-	circuit board	135 thick 20-layer polyimide / glass	17.5								
1	0402 SMR	19X39, 9caps, 29X35 lands, 28X35 foot, 24X30 fracture plane, fillet to cap, 1.2 mil sldr thick, 21 toe.	6.4								
2	2010 SMR	99X196X 21, 20 caps, 65X121 lands, 51X110 foot, 40 X115 fracture plane, 1.1 mil solder film, 9 toe.	6.4								
3	52 I/O LCCC	2 I/O LCCC 750X750, 950 cas diag, 25 cas-land width, 34x96 lands, fillet3/4up .85 solder, 36 toe									
4	little Plastic FP 28 I/O 50 pitch 273X774X90, 490landtoe-toe, 655 body-attach diagonal, 715 foot-center diagonal, 10X16 leads, 35X121lands, 5 degree angle, 15 radius, 28 straight lead-length, 11shoulder, 11X40 foot, 30X94 wetted foot, 28x55 fracture plane, toe fillet to top of lead, heel fillet 23 up heel, 23 heel fillet, 23 toe fillet, 0.9 mil skr film thick										
5	big Plastic QFP 144 I/O 25 pitch										
6	little ceramic FP 28 I/O 50 pitch	Frances su straining lean Jenning 23 shoulder 17344 that sha wellen tool. Zhenu tracilire hane the tiletto									
7	Big ceramic QFP 192 I/O 25 pitch										
8	Big P-BGA, Amkor 1517, 1mm	1572 sq body, 2068 ball diag, 16 collaps ht, 28 fattest, 25at fracture plane, 20.5 dia land NSMD on PWB, 22.5 land slite SMD on package,	15.0								
9	Big C-BGA 625 full, 1.0mm	On UNIXE 35 jand on packade 1 mil thinnest tilm tillet covers jand and 1X mils lin hall sides 75% tails at									
10	Big Ceramic CoIGA, 625, 1.27mm	1281sq body, 1692 ball diag, Raychemcolumns, 88 ht, 21coldia, 29 dia at f plane, 37land NSMD on PWB, 35 land on package, 1 mil film base, fillet 10 up column sides, and down 5 mils from package, 75% fails at bottom fillet.	1								

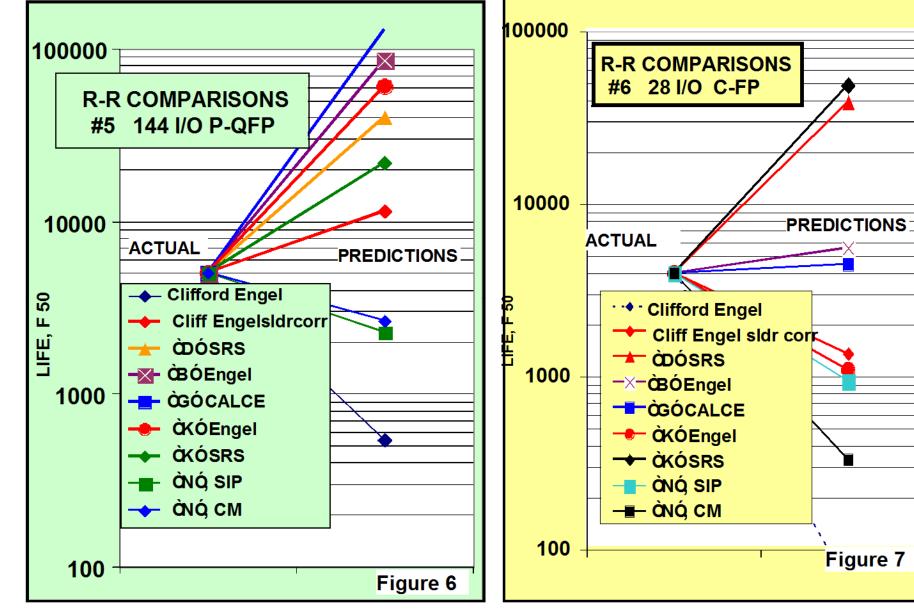
ROUND ROBIN ÉÉÉ	É PRE	DICTO	DR MO	DDEL	ТА	BLE 2	2	SUM	MARY	
	COMPONENTS / DESCRIPTIONS (see Details). AND PREDICTED F50s									
_	1	2	3	4	5	6	7	8	9	10
PREDICTOR MODELS	0402 SMR	2010 SMR	52 1/0 LCCC	28 I/O P-FP	144 I/0 C-QFP	28 1/0 C-FP	192 I/O C QFP	big P- BGA	big C- BGA	big CCol- GA
Cliff (Engel) 100%	1844	25	1	20	541	63	607	2819	0.2	6469
Cliff (Engel w 'correct' solder) 100%	15380	256	13	332	11540	134 9	12960	na	26	na
D (Clech)	1728	2646	762	29320	40,140	38840	14400	96 3	244	6228
B (Engel)	31981	632	37	209	85814	5669	132560			
G (CALCE)	33025	811	431	29215	130000	4611	3019	1451	961	12 9 4
K (Engel)	1844	25	1	869	60621	1086	166	7066	175	1482
K (Clech)	4325	9078		79110	21790	49030	3164			
N (SIP)	2237	502	11 9	1361	2258	9 44	792	2059	1089	1328
N (CM)	1667	82	310	561	2631	330	1844	1365	271	441
ACTUAL TEST RESULTS										
Cracks begin, (est)	2500	300	75	1500	1400	1000	1200	250	50	500
Cracks at 50% thru fracture plane area (est)	8000	900	360	4800	3800	3600	3700	400	60	2500
Cracks at 100% thru fracture plane area (est)	10000	2800	500	5600	5000	4000	4600	550	75	3225

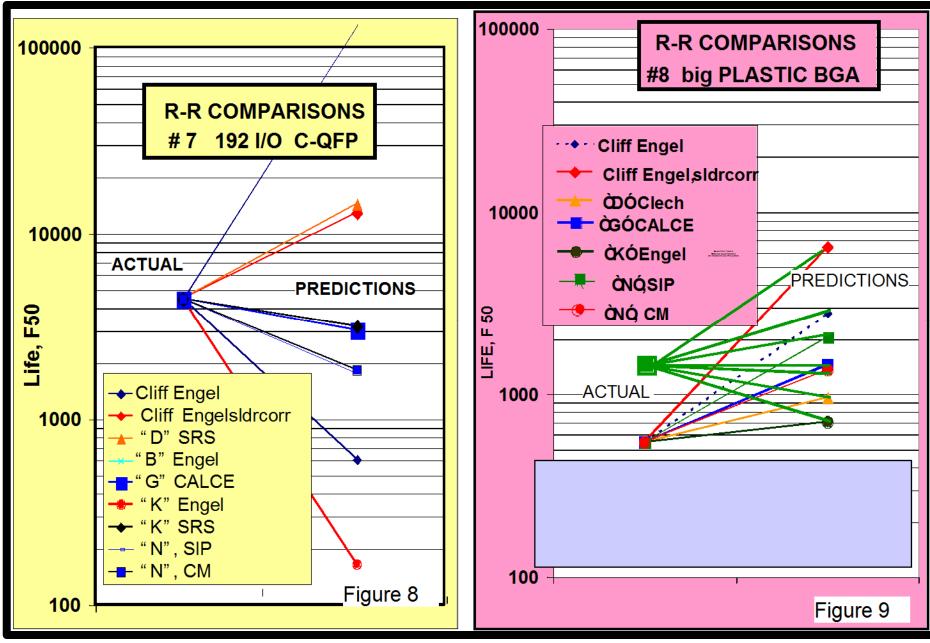
7) CONCLUSIONS, AND Q & A

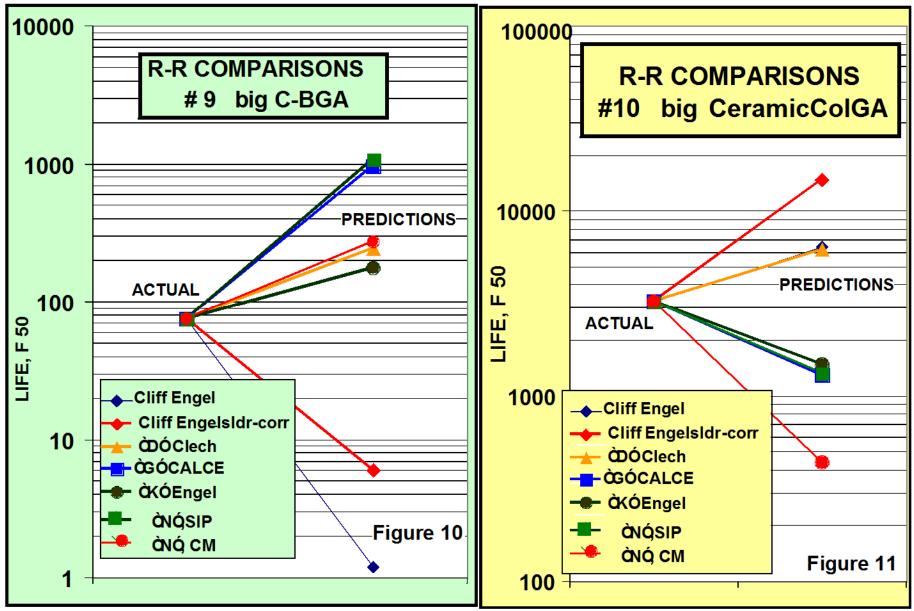
- 6) PARAMETRIC STUDY AND RESULTS
- 5) RESULTS, COMPARISONS, CONCLUSIONS
- 4) THIS STUDY: GROUND RULES
- 4) WHY USE A "ROUND ROBIN" ?
- 3) WHY COMPARE PREDICTOR MODELS?
- 1) WHAT IS A PREDICTOR MODEL?


CONTENT


RESULTS , COMPARISONS


THE FOLLOWING GRAPHICS SHOW THE COMPARATIVE NUMERICAL RESULTS OF ALL PARTICIPANTS' PREDICTIONS, FOR EACH COMPONENT.


NOTE THAT EASE-OF-USE DIFFERED SIGNIFICANTLY:


 THE ENGELMAIER-BASED MODEL IS AN EXCEL SPREAD-SHEET THAT IS KEY-STROKE-SIMPLE, WITH ONLY 20-30 INPUTS.
 THE "N-CM" IS MAIN-FRAME, ARCANE, COMPLEX AND VERY SLOW.
 THE "N-SIP" IS DESK-TOP, BUT RELATIVELY SLOW.
 THE CALCE AND CLECH/SRS MODELS ARE MID-RANGE, DEPEND ON SKILLS, AND ARE VERY CAPABLE.

CONCLUSIONS

THE <u>ACTUALS</u> FALL IN THE MIDDLE OF ALL THE PREDICTIONS. THAT'S REASSURING, FOR TESTING CREDIBILITY.

SOME MODELS PREDICT "HIGH" FOR SOME COMPONENTS, AND VICE VERSA. NO CONSISTENT PATTERN, BY MODEL OR BY COMPONENT.

YOU CAN COUNT ON PREDICTING <u>WRONG</u> BY A FACTOR OF 2-5X EITHER SIDE. FOR ANY COMPONENT, USING ANY MODEL. THAT'S NOT GOOD BUT NOT UNEXPECTED.

SOME MODELS ARE MORE COMPLEX AND ALL-INCLUSIVE, PLUS PERHAPS MORE AMENABLE TO "TWEAKING" AND "FUDGE". >>>> THAT IS LEGIT, IF IT'S BASED ON PROPER SCIENCE <<<<<

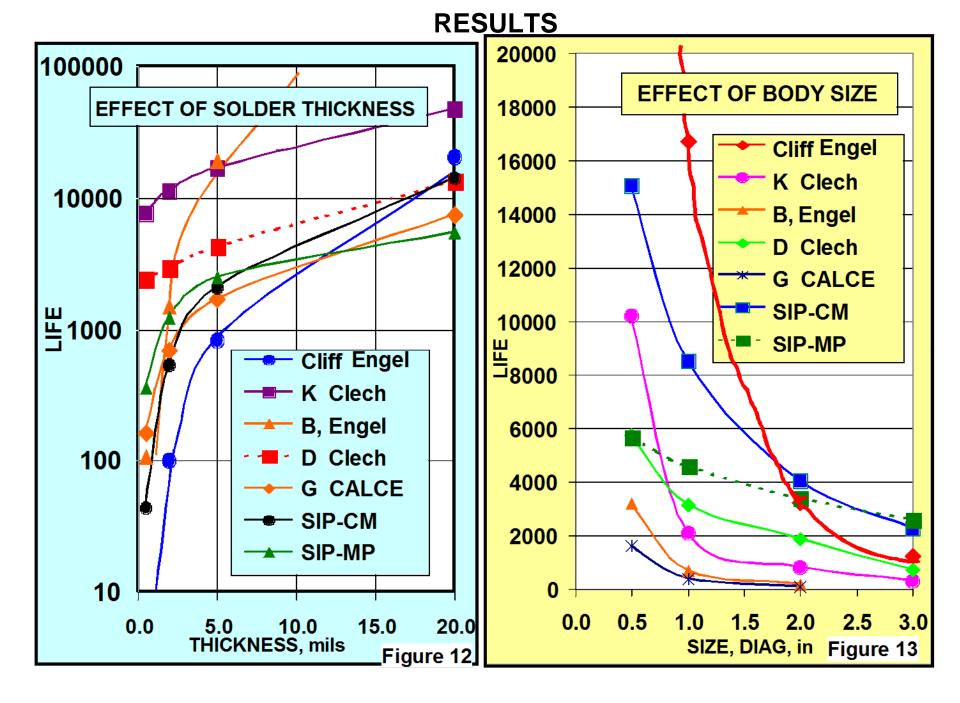
6) PARAMETRIC STUDY, AND RESULTS7) CONCLUSIONS, AND Q & A

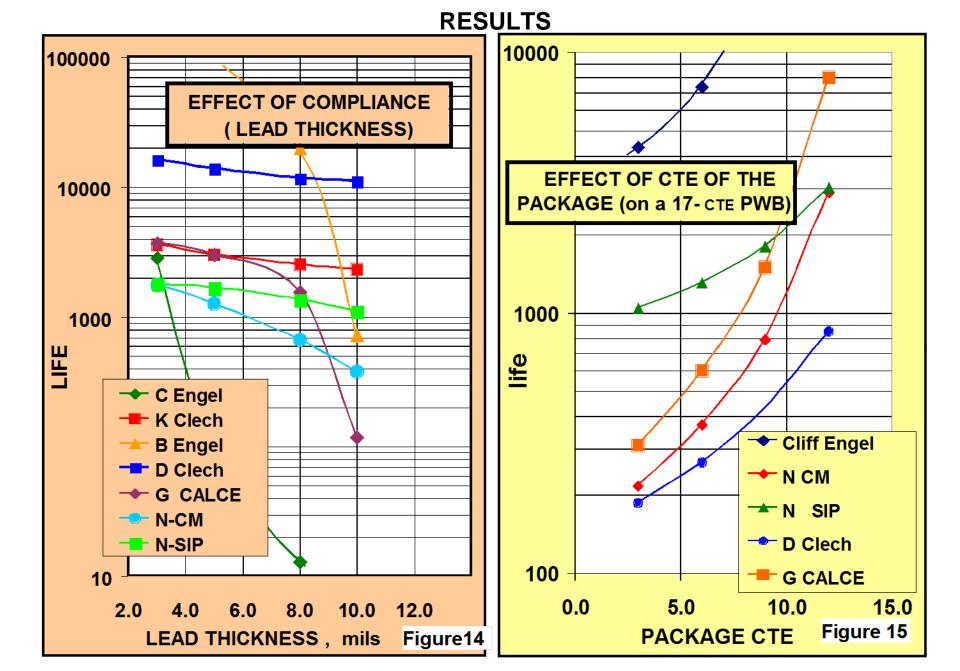
- 5) RESULTS, COMPARISONS, CONCLUSIONS
- 4) THIS STUDY: GROUND RULES
- 3) WHY USE A "ROUND ROBIN" ?
- 2) WHY COMPARE PREDICTOR MODELS?
- 1) WHAT IS A PREDICTOR MODEL?

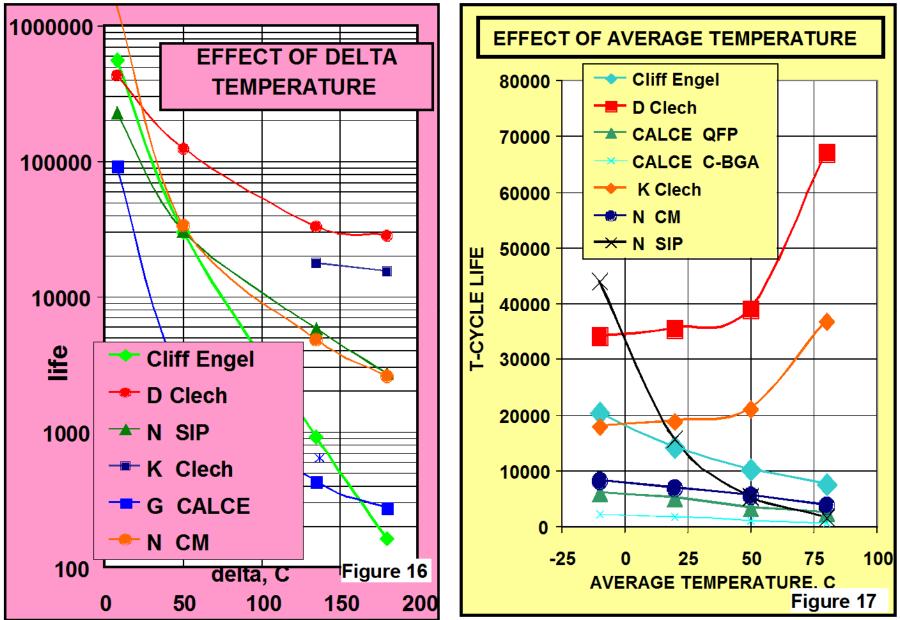
CONTENT

PARAMETRIC VARIANCE, OR TRANSFORM THE OTHER WAY TO "PREDICT" T-CYCLE LIFE

.... NOT TO PREDICT LIFE FROM SCRATCH (THE PREDICTOR MODEL) ... BUT TO "TRANSFORM" FROM A KNOWN SITUATION TO A NEW SET OF CONDITIONS. FOR INSTANCE:


- IF A CERTAIN COMPONENT IF FELT TO BE "OK" IN A GIVEN APPLICATION, HOW MUCH WORSE WILL BE A COMPONENT THAT IS 0.5" BIGGER, ALL ELSE EQUAL?
- IF A COMPONENT WITH A PACKAGE CTE OF <u>16.5</u> HAS AN F50 OF 2250 CYCLES IN A GIVEN TEST, WHAT WOULD THE F50 BE IF THE CTE IS <u>6.8</u>, INSTEAD?
- IF A GIVEN COMPONENT/PWB IS KNOWN TO BE BARELY OK IN AN APPLICATION WITH A DELTA T OF <u>15</u> DEGREES, HOW MUCH WORSE WILL IT BE IF THE DELTA T IS <u>22</u> DEGREES?


THIS PARAMETRIC STUDY WAS AN ADD-ON BONUS. ONCE THE PARTICIPANTS GOT THEIR MODELS SET UP, THEY WERE ALL ASKED TO RUN SOME STANDARD CASES: VARY ONE FACTOR AT A TIME; SEE WHAT EFFECT THAT HAS ON T-CYCLE LIFE.


FACTORS INCLUDED HARDWARE PARAMETERS, AS WELL AS EXPOSURE CONDITIONS.

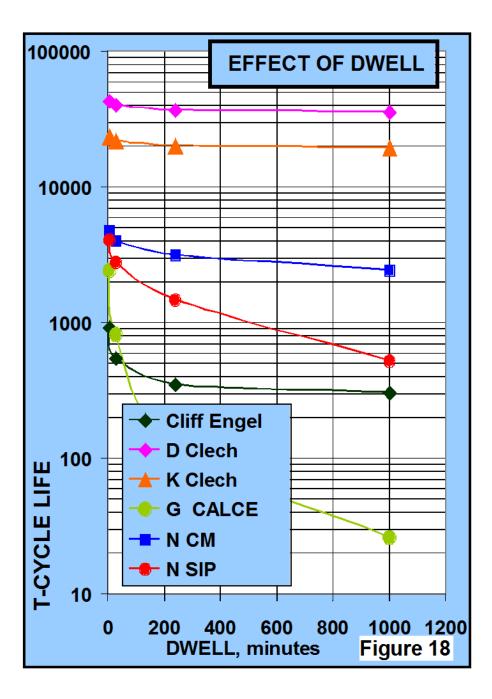

THIS EXERCISE WAS TO COMPARE "TRANSFORM" CAPABILITIES, AMONGST THE VARIOUS MODELS.

TABLE 3 ROUND-ROBIN, PARAMETRIC ANALYSIS AOVs, response surfaces																	
AOVs É . 1) Use component 2, hardware vary the solder thickness, mils					2) Use component 8, vary the diagonal dim,				3) Use component 7, vary the lead thickness @ constant width = .01				4) use component 9, vary the component CTE				
parameter valu	e 0.5	2.0	5.0	20.0	0.5	1.0	2.0	3.0	3.0	5.0	8.0	10.0	3.0	6.0	9.0	12.0	
C Engel,	4	100	834	20680	89240	16710	3238	1253	2870	133	13	5	4336	7417	14940	40920	
K Clech	7691	11260	16990	47070	102	21	8	3	3612	3048	2556	2345	[
B Engel	107	510	19350	443474	102	21	8	3	288725	132596	20036	736					
D Clech	2461	2962	4326	13509	s754	3168	1856	716	16140	13920	11770	11078	186	267	429	853	
G CALCE	164	400.0	1700.0	7534.0	D.				3745.0	3019.0	1558.0	118.0	311.0	600.0	1500.0	8000.0	
N-CM	44	530	2095	14282	15059	8525	4029	2248	1763	1264	674	381	216	373	795	2905	
N-SIP-	361	1231	2469	5466	5644	4614	3413	2592	1787	1667	1373	1101	1053	1315	1805	3035	
					65				4 6				47. C				
AOVsÉ. conditions	(b) use component b _vary use					6) 5, vary the average temp, @delta=120				7) 5, vary dwells, minutes				8) 10, vary F.xxx, @ beta 7			
parameter valu	^e 180	135	50	8	-10	20	50	80	5	30	240	1000	63.0	0.1	0.010	0.001	
C Engel,	164	1126	30220	558000	2035	1412	1010	743	912	541	350	302	2968	1107	797	543	
D Clech	28480	33020	123700	433000	33960	35250	38860	66900	42780	40140	36680	35590	6228	1970	1342	914	
B Engel																	
K Clech	15580	17760	Crash	Crash	⁵ 17840	18690	20920	36650	23220	21790	20040	19450	S L				
G CALCE	274	431.0	2488.0	92000.0	N N				2408.0	811.0	114.0	26.0					
N-CM	2593	4819	33403	1E+06	8068	6860	5566	3857	4753	4003	3160	2438	8				
N-SIP	2726	5772	30579	229800	43924	15701	5334	1623	4063	2794	1464	522					

ALL THE MODELS AGREE ON ALL THE HARDWARE PARAMETERS. EVEN THOUGH THE ABSOLUTE VALUES DIFFER, THE SLOPE OF THE CURVE IS ESSENTIALLY THE SAME.

THAT MEANS IF ANY MODEL IS ASKED WHAT IS THE IMPACT OF A SMALL CHANGE IN ONE PARAMETER, THE CALCULATED IMPACT WILL BE APPROXIMATELY THE SAME.

THE ODD RESPONSE TO AVERAGE TEMPERATURE VARIANCE (FIGURE 17) IS UNEXPLAINED, AT THIS POINT

7) CONCLUSIONS, AND Q & A

- 6) PARAMETRIC STUDY AND RESULTS
- 5) RESULTS, COMPARISONS, CONCLUSIONS
- 4) THIS STUDY: GROUND RULES
- 3) WHY USE A "ROUND ROBIN" ?
- 2) WHY COMPARE PREDICTOR MODELS?
- 1) WHAT IS A PREDICTOR MODEL?

CONTENT

CONCLUSIONS

1) PREDICTIONS OF ABSOLUTE T-CYCLE LIFE REMAINS PROBLEMATIC.

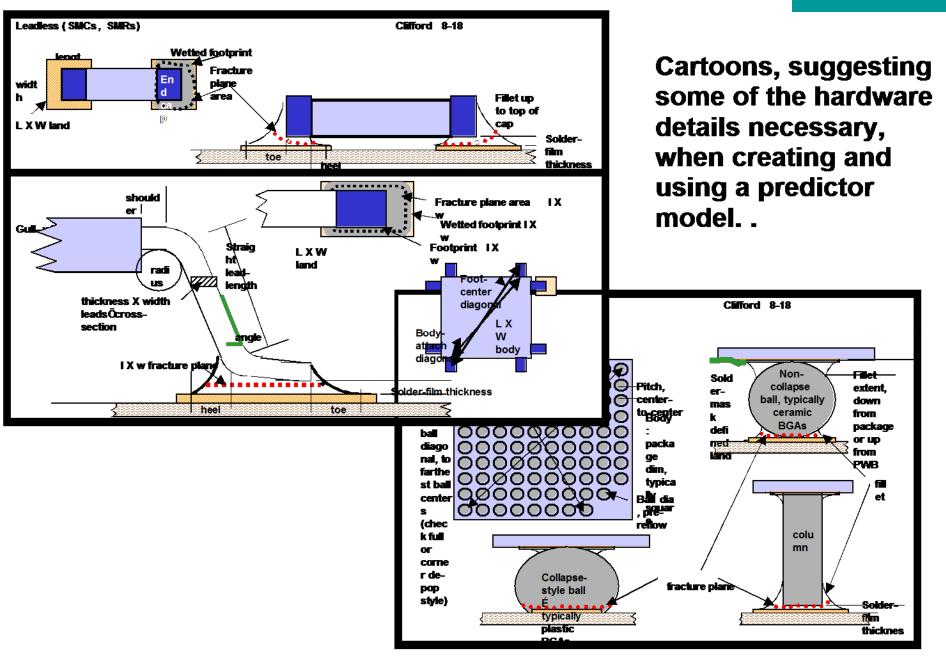
2) SOURCES OF DIFFERENCES MIGHT INCLUDE THE MODELS' DEFINITION OF FAILURE, THE INCLUSION OF DIFFERENT FACTORS, AS WELL AS DIFFERENT INTERNAL MATH AND PHYSICS.

3) TRANSFORMS STARTING WITH SOME KNOWN SITUATION, THEN VARYING THE PARAMETERS LOOKS LIKE THE BEST BET, AT LEAST AS A FIRST CUT.

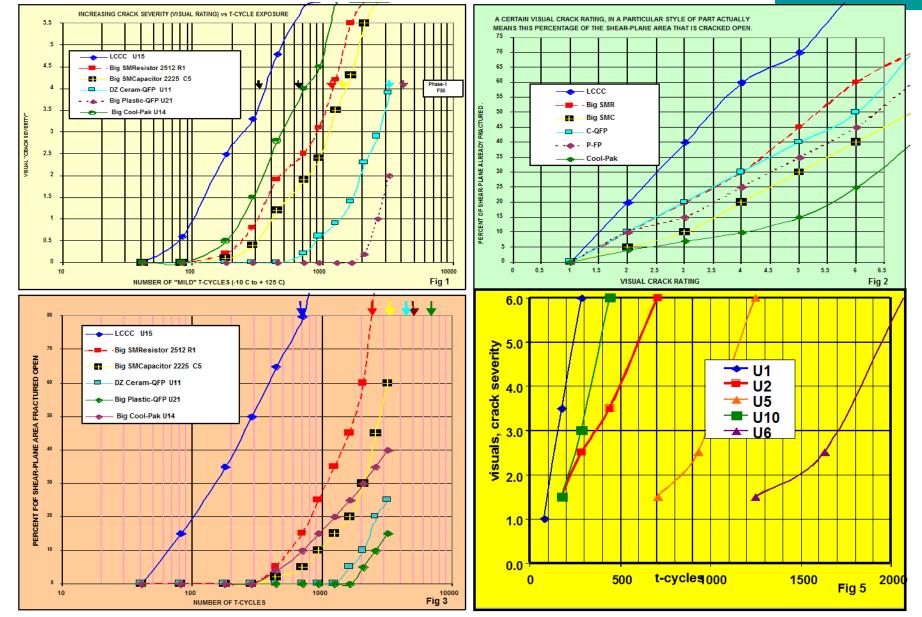
4) MUCH MORE WORK ... DIFFERENT MODELS, MORE HARDWARE CASES, INCLUSION OF LEAD-FREE ALLOYS, etc, WOULD BE USEFUL.

5) FEEL FREE TO TRY YOUR FAVORITE MODEL USING THE TEN ACTUAL CASES DESCRIBED. NO FAIR PEEKING AT THE RESULTS, FIRST, THOUGH.

AKNOWLEDGEMENTS


THE AUTHOR THANKS ALL THE PARTICIPANTS, CERTAINLY.

THE AUTHOR IS EQUALLY GRATEFUL FOR THE ENCOURAGEMENT BY INDUSTRY EXPERTS, TO DO THE STUDY AND TO DRAMATIZE THE IMPORTANCE OF HARDWARE FACTORS AND EXPOSURE CONDITIONS ON <u>SOLDER-JOINT RELIABILITY.</u>


THE WORKERS AT LOCKHEED MARTIN, WHO HELPED RUN THE T-CYCLE TESTS AND CHARACTERIZE THE SPECIMENS, WERE THE STRENGTH OF THIS ENDEAVOR. ANY ERRORS ARE ALL MINE.

APPENDIX A

Applicatio	<mark>n gu</mark> i	life summary										
Typical SMT compo	onents, o	n conve	ntional	poly/glass PWB	clifford 5-25-06							
typical parts' t-cycle life	e, in our stand	lard test		Extrapolated to	ditions							
Examples of SMT parts' t-cycle life, on Poly/Glass PWBs, based on Phase 1 data, @ delta 135, ave 57 C.	F 50 at delta 135, from Phase 1, corrected to est all at 75% fracture plane	test data @ F .001 (from Phase 1)	F.001 test data, converted to 35 C	mild: 50,000 cycles @ F.001, 20 min. dwell, 35 C average, delta 11 C	medium: 75,000 cycles @ F.001, 20 min. dwell, 35 C average, delta 13C	severe: 100,000 cycles @ F.001, 20 min. dwell, 35 C average, delta 15 C						
big C-BGA 1.9" diag	65	13	17	5349	3642	2621						
small C-BGA .8" diag	130	27	33	10698	7285	5242						
big LCCC 68 I/O *	195	40	50	16046	10927	7863						
medium LCCC 52 VO	320	66	82	26332	17932	12903						
small (20 I/O) LCCC	750	155	193	61717	42028	30241						
big MELF	900	185	232	74060	50433	36289						
big plastic BGA, 1.9" diag	950	196	245	78175	53235	38305						
big chip cap or res, typ 2512	1250	258	322	102861	70046	50402						
big ceramic QFP 25 mil pitch	1350	278	348	111090	75650	54434						
CColGA 1.6", IBM cols	1500	309	386	123433	84056	60482						
CColGA 1.6", NTK cols	1600	330	412	131662	89659	64514						
little chip cap or res (typ 1206)	2300	474	592	189265	128885	92739						
CColGA 1.6", Ray cols	2700	556	695	222180	151300	108868						
small ceramic FP 28 I/O	3400	700	876	279783	190526	137093						
big Plastic QFP	4800	989	1236	394987	268978	193542						
mBGA 3/4" diag*	5000	1030	1288	411445	280185	201607						
tiny chip res (typ 0201)	6000	1236	1545	493734	336222	241928						
This chart shows which com	This chart shows which common SMT components are likely to survive a typical LEO mission											

APPENDIX C

