Base Material Consideration for High Speed Printed Circuit boards

Eric Liao Taiwan Union Technology Corporation

EXECUTIVE SUMMARY

Over these years, EU RoHS restriction and lead-free capability is the hottest environmental protection subject. In technology trend, signal integrity performance gets more critical upon today's higher signal transmission speed demand in every field of applications such as computer CPU and GPU chipset levels, system operation frequency and a variety of communication bus and cable like PCI express, SATA II and AGP bus for computer system. Signal communication speed will shift from 1-5 Gbps range up to 5-10Gbps depending on applications. In order to meet lead-free ingredients and severe processes conditions with capable signal integrity performance, laminate material will play a more and more critical and sensitive role in the system.

From consumer products to high-end applications, they all need certain electrical and thermal performances; it is therefore essential to meet those requirements with cost effectiveness. As a base material supplier, we will hereby discuss material design and factors that influence signal integrity, including epoxy and hardener, resin chemical construction, laminate ply-up construction, amount of resin content, fabric weaving density, moisture pick-up and environment factors etc. for a massive mainstream application and low loss application under the hypothesis of lead-free capability.

High Speed Printed Circuit Boards

for

IPC Roadmap : Board Clock Frequency

	CURRENT 2006-2007		NEAR TERM 2008-2009		MID TERM 2010-2011		LONG TERM 2012-2016	
EMOLATORS	RCG	SoA	RCG	SoA	RCG	SoA	RCG	SoA
E1 Electronic Games	400	500	650	800	650	950	800	1200
E2 Consumer Products	130	150	250	350	700	800	1000	1500
E3 Hand-held / Wireless	130	180	250	300	700	900	1000	2000
E4 Mid Range Performace	1000	2000	1500	3000	2000	4000	3500	5000
E5 High Performace System	750	1250	1250	2500	2500	5000	5000	10,000
E6 RF and Microwave	450	600	550	700	700	800	1000	1200
E7 Harsh Environment: Aero	700	900	1000	1200	1600	1900	1900	2200
E8 Harsh Environment: Auto	56	100	80	150	150	200	200	500
IPC Technical roadmap 2006-2007								

Signal Integrity

Signal Integrity – Overall Consideration

Signal Integrity – Base Material

Signal Integrity – Resin System

Signal Integrity – Resin System

Signal Integrity

Specimen :

- 4" / 16" length
- 4L / stripeline
- 50 ohms
- RTF Foil

- Monitor Items :
- SPC Dk/Df
- Effective Dk/Df
- (IBM SPP)
- Loss S₂₁

Test equipment :

- Tektronix TDR (Time Domain Reflector)
- PNA Network Analyzer (Signal Attenuation)
- Pulse Pattern Generator (Eye Diagram)
- Oscilloscope (Eye Diagram)
- Test Fixture: 26 GHz bandwidth SMA connector

Df (Resin System, RC)

FR4 Grade Materials

Frequency (GHz)

A : bisphenol A novolac system B : bisphenol A + phenol novolac C : TUC mid-Tg material system D : TUC Hi-Tg material E : Hi-Tg dicy-cured

F: phenol novolac system

Specimen : 4L stripeline 4" length

FR4 Grade Materials

Loss	Α	В	С	D	E	F
1.0 GHz	108.6%	103.7%	101.6%	101.0%	100.6%	100%
3.0 GHz	110.7%	104.6%	102.0%	101.3%	100.8%	100%
5.0 GHz	111.6%	105.0%	102.2%	101.4%	100.8%	100%
BW : -3dB	~4.2GHz	~4.5GHz	~5.1GHz	~5.2GHz	~5.2GHz	~5.2GHz

A : bisphenol A novolac system

- B : bisphenol A + phenol novolac
- C : TUC mid-Tg material system

- D : TUC Hi-Tg material
- E : Hi-Tg dicy-cured
- F : phenol novolac system

Mid / Low Loss Materials

Mid / Low Loss Materials

Transmission length for different resin system

Material / -3dB	3GHz	5GHz	8GHz	BW
Dicy Hi-Tg	5.6 in	3.7 in	2.4 in	5.2GHz
mid-loss : Filled Novolac	6.7 in	4.5 in	3.1 in	5.9GHz
mid-loss : Anhydride	6.9 in	4.6 in	3.1 in	6.2GHz

BW is base on 4 inch line

16" stripeline

Attenuation

- = Dielectric loss + Conductor loss
- = Loss (base material) + Loss (circuit trace)
- = Material Dk / Df + Circuit Geometry and Roughness

Conduct Loss – Roughness

HTE – roughened foil

RSTF – smooth foil

Conduct Loss – Roughness

Conduct Loss – Roughness

Material : Low Loss Material

Loss Dominator

Loss Dominator

Loss Dominator

Dk – Construction

Df – Construction

Loss – Construction

Construction is one of key factor for loss.

- Special Layout and Routing
 Designer Rotates Image
 Lopsided glass weaving
- Use low Dk fabric
- Increase weaving density
- Even / flatten count weaving

1080 FABRIC

- Special Layout and Routing
- Designer Rotates Image
- Lopsided glass weaving
- Use Low Dk fabric
- Increase weaving density
- Even / flatten count weaving

1080 Grade Fabric

Window Area Ratio	Regular Type	Open-filament Type	Flatten Weaving Type
2 mil	~30 %	~15 %	~1 %
3 mil	~25 %	~8 %	~3 %
4 mil	~10 %	~3 %	~1 %

Optimize fabric can moderate the signal skew effect.

Moisture – Condition

Moisture – Resin Systems

Resin system is a factor for moisture pick up.

Dk - Moisture

Df - Moisture

Signal Integrity – Conclusion

Conclusion

- Signal integrity is a complex topic.
- Resin system is the most critical factor for base material.
- Suitable resin system with smooth foil is 1st priority.
- Fabric design might be a solution for signal skew issue.

eric.liao@tuc.com.tw

