Why Electroless Palladium: Study on Impact of Electroless Palladium on Electroless Nickel Deposits

Eric Stafstrom Technic Inc

Executive Summary: IPC Midwest 2009

Electroless nickel immersion gold (ENIG) has captured the major share of the lead free final finish market globally even though it's not the least expensive. ENIG not only provides a robust metallic coating required for assembly with lead free alloys, but also, an effective barrier to virtually stop copper migration into the attachment surface of the PCB. This provides a true surface with long term, low contact resistance with long shelf life and good solderability. So why make any changes to ENIG? Three reasons;

- Improved window on lead free soldering
- Improved robustness for touch contacts.
- Wire bonding of fine features

Lead Free Soldering: After years of testing, discussions, failures and success, lead free soldering has completed the transition from the lab to production. Lead while bad for the environment, was great for soldering and had a tremendous operating window. When compared to eutectic tin lead, liquidous time and spreadability of lead free alloys is less making the final finish on the PCB more critical. As far as ENIG, imperfections in the ENIG deposit, which were not critical with eutectic tin lead, can become an issue because the operating window on Pb-free soldering processes are tighter.

Soldering actually occurs on the electroless nickel as the immersion gold is dissolved into the solder joint. Oxides or intermetallics on the electroless nickel decrease the solderability of the electroless nickel surface causing poor solder wetting or weak solder joints. The oxides and intermetallics are actually corrosion products from the deposition of immersion gold on the electroless nickel. With eutectic tin lead this was called black pad and as suppliers we have learned to reduce the aggressiveness of the immersion gold by shorter times or chemical changes and to increase the chemical resistance of the electroless nickel by increasing the phosphorus content and selection of stabilizers. Classic black pad was a major issue with eutectic solder, but minor amounts of corrosion products typically soldered fine. Now with reduced wetting from lead free soldering, the amount of corrosion products that can be tolerated is reduced.

These corrosion products can be observed under the immersion gold by stripping the gold and evaluating the surface below. A few things become evident in the location and formation of the corrosion products. They almost always initiate around the electroless nickel grain boundaries and or in areas where the electroless nickel coverage is not complete, like around micro-pits or edges of traces or around pads. When cross-sectioned, if due to imperfections in the electroless nickel deposit, large corrosion spikes can be seen at relatively low power. These areas while extremely small would still solder completely with eutectic tin lead and with most lead free soldering processes. The exception is a lead free process with extremely short liquidious time. This provides less wetting time to penetrate the corrosion products.

Why Electroless Palladium

A Study On Impact Of Electroless Palladium On Electroless Nickel Deposits

Eric Stafstrom Technic Inc.

Why ENEPIG

• Benefits

- Improved solderability
- Improved solder joint strength
- Wire bondable
- Improved Contact resistance
- Theory
 - Complete coating EN surface
 - Different Sn intermetallics on Pd

Impact Of Stabilizer On EN Deposit

- Typical EN deposit nodular in nature no break or "cracks" in deposit
- Choice & Level Of Metal Stabilizer Changes EN Morphology
 - High levels of metal stabilizer creates breaks/fissures in EN surface
 - Specific stabilizers have a 0.5 ppm range in concentration

Figure 1. The surface of one of the brighter pads shows a definitely unusual structure. 2,000X

Impact Of Micro-pits On EN Deposit

- Pitting in EN surface
 - Activation & EN Stability
 - Surface Tension of EN solution
- Pitting provides access to Cu to immersion Au
 - Increase immersion Au activity
 - Creates hyper attack on EN
 - Creates dark Ni-oxide making surface difficult to solder

Impact Of Sulfur Stabilizer On EN Deposit

- Sulfur stabilizer impacts grain boundary
 - Specific compounds makes grain boundary more susceptible to attack
 - Deep corrosion sites into En surface usually visible @ 1000X
 - Dark areas are Ni-oxide and are less solderable

Figure 7. Higher magnification shows a pattern of deeply grooved grain boundaries. 2,000X

Impact Of Activation On Initiation Of Electroless Nickel

- 10 Seconds Electroless Nickel
- Pd lay down will determine nucleation of electroless nickel
- Grain boundaries (cauliflower Structure) determined by activation

nm 2 μm

Technic Inc

Electroless Nickel Nucleation

5 Seconds

CONFERENCE & EXHIBITION

10 Seconds

EN 10 second

20 Seconds

WD: 10.1720 mm SEM MAG: 11.52 kx Date(m/dbi): 08/11/09 SM: RESOLUTION 40 Seconds

SEM HV: 30.00 kV Det: SE SEM MAG: 11.50 kx WD: 10.0230 mm Date(m/d/y): 08/11/09 SM: RESOLUTION

EN 40 seco

120 Seconds

SEM HV: 30 00 kV Del: SE SEM MAG: 11.47 kx WD: 10.1020 mm 5 µm Technic Inc Date(m/dA): 08/07/09 SM: RESOLUTION EN 120 secon

Det: SE WD: 5.0580 mm

SEM HV: 30.00 kV

SEM MAG: 11.55 kx

Technic Inc

EN 20 seconds

20 Minutes

5 µm Date(m/d/v): 08/11/09 SM: RESOLUTION

Technic Inc EN 20 minutes

EN 60 second

ENIG Process Control Parameters Effecting EN Deposit Integrity

- Electroless Nickel Bath:
 - Measurable: pH, temp, Ni, Hypo, Ortho
 - Qualitative: metal & sulfur stabilizer, complexant, solution flow, wetter level
- Activation
 - Measurable: Pd, acid, temp, etch rate, oxidizer in micro etch, contaminates
 - Qualitative: Rinse water, agitation, racking,
- Part Design
 - Galvanic effect
 - Solder mask
 - Dimensions & types of features

ENEPIG Mechanism For Improved Performance

- Like Immersion Au Electroless Pd Initiates First On Ni Grain Boundaries
- Immersion Au is Chemically Designed to Corrode EN Creating By Products
- Potential Difference Between Au & Pd Much Lower making Immersion Au Less Aggressive on Pd
- Electroless Pd "Seals" EN Defects Limiting The Attack Of Immersion Gold

ENEPIG (10 micro inches Pd)

Typical ENIG Deposit

ENIG After Au Strip

Study To Compare ENEPIG To ENIG

- Quantify Amount of Pd For Different Applications
- Evaluate Solderability
- Measure Contact Resistance
- Impact of Pd on Wire Bonding

ENEPIG Wetting Balance Results

Wetting Balance Parameters:

SAC; 260°C; 5 sec. dwell time; non activated type R flux

Test Vehicle:

Olin 151 lead frame with & without 2 hour 155 °C Bake

	Time to 0 (sec)	Max Force (uN/mm)	Time To Max (sec)
AS Coated ENEP	0.50	1.21	5
1 Hour 155C Bake ENEP	0.88	1.76	5
AS Coated ENEPIG	0.38	0.90	3.2
1 Hour 155C Bake ENEPIG	0.28	0.7	5

ENEPIG As Coated

ENEPIG 2 Hour 155 C

Impact Pd Thickness Wetting Balance Test: ENIG Vs ENEPIG

Wetting Balance

Parameters: SAC; 260°C; 5 sec. dwell time; non activated type R flux

Test Vehicle:

Olin 151 lead frame As plated, 3 SMT Reflows with & without 2 hour 155 °C Bake

ENIG vs ENEPIG with 6 Thickness of El Pd

Wetting Balance Results ENIG vs ENEPIG After 3 SMT Reflows

- Evaluation Of Wetting Balance
 - Time to 0, 2/3 force, max force, Time to max force
 - Shape of the curve
- ENIG: 1.29 Sec time to 0 & 2.51 sec time to 2/3
- ENEPIG: 0.3 & 0.7 seconds

ENIG Wetting Balance 3 SMT reflows

ENEPIG (2 PD) Wetting Balance 3 SMT reflows

Wetting Balance Results ENIG vs ENEPIG

- When aged, with SAC 305, solder wetting on ENEPIG is improved over ENIG
- Very thin Pd deposit necessary to improve SAC wetting
- All wetting very good on ENEPIG so impact of increase Pd thickness can not be seen
- Future Work:
 - Evaluation of intermetallic
 - Evaluation of other alloys

Device To Measure Contact Resistance

- Modified 4 point
 Contact Resistance
 - Load cell to control probe force
 - Round probe plated with Au
- Flat Connector Stock As Test Vehicle
- Computer Control Actuation & Data Collection

Contact Resistance Test: ENIG vs ENEPIG

- Test Vehicle: Flat Copper Plated Connector Stock
- Test Conditions:
 - Three finishes ENEG, ENIG, ENEPIG
 - 6 Thicknesses of electroless
 Pd
 - 6 Probe Forces
 - Aging
 - 3 Pd free SMT reflows
 - 3 SMT reflows & 8 hours steam

Contact Resistance Test After Aging

- ENEG Always Lowest Resistance
- ENIG vs ENEPIG Similar as Plated
- General Trend of Thicker Pd Yield Lower Contact Resistance
- Issues With Gold Thickness on Pd
 - Lower thickness on thicker Pd samples
 - Gold deposit bigger impact on contact resistance

ENIG vs ENEPIG Gold Wire Bond Strength

Test Parameters:

- Bonder: AB356 Automatic Gold Wire Ball Bonder
- Wire: 99.99% Gold , Size=1 mil, T.S.=10-15 gm
- Capillary: GAISER Tool Company (1572-17-437GM-20D)

Results

- 5-6 gm Ave pull 1mil Au wire
- ENIG Substantially Lower

	ENIG		2 microinches Pd 5 Microinches F		Pd	10 microinches Pd		15 microinches Pd		20 microinches Pd		
Wire#	grams	code	grams	code	grams	code	grams	code	grams	code	grams	code
1	6	Α	4.8	В	6.5	В	5.1	В	3.1	D	4.2	В
2	4.5	В	3.2	В	5.5	В	4.2	В	6.3	В	3.5	В
3	2.5	D	6	D	6.5	В	5.5	В	5.2	В	4.2	В
4	2	D	3.8	В	7.8	В	4.3	В	5.1	D	3	В
5	2	D	4.2	В	9.6	В	4	В	5.6	В	7	В
6	3.4	В	2.9	В	5.8	В	4.2	В	7.5	В	5.5	В
7	3.5	В	6.5	В	4.8	В	4.8	В	2.6	В	2.9	D
8	3.5	В	6.9	В	10.1	В	4	В	7.9	В	4.8	D
9	5	В	7.2	D	5.4	В	2	D	6.8	D	3.8	В
10	32	В	8.5	D	4.1	В	4.1	В	6.4	В	4.5	В
11	3.8	В	7.4	В	5.5	В	3.1	В	3.2	D	5.2	В
12	2.8	A	5.8	В	62	В	6.2	В	10.2	В	4.9	В
13	4.9	В	4.3	В	4	В	7.2	В	5.3	В	6.5	В
14	2.9	В	6.7	В	52	В	3.1	В	3.9	В	4	В
15	4.6	В	3.8	В	5.4	В	6	В	4.2	В	6.8	В
16	5.9	Α	3.5	В	7.1	В	6.2	В	3.7	В	5.2	В
17	62	В	9.9	D	4.8	D	4	В	4.2	В	3.5	В
18	2	D	4	В	52	В	3.8	В	2.8	В	3.8	В
19	2.5	D	7.3	В	4.1	В	5	В	4.5	В	5.5	В
20	3.5	D	7.7	В	42	В	4.2	В	5.2	D	3	В
21	3.5	В	7.9	В	8.5	D	4	В	2.6	D	4.1	D
22	42	В	7	В	3.8	В	4.5	В	6	В	5.2	В
23	3.1	В	9	A	7	В	8.4	В	4.1	В	6.1	D
24	5.1	В	8.9	в	42	В	6.3	В	4.2	В	6.4	В
25	4.7	Α	8	в	7.5	В	8.3	в	2.5	В	6.2	D
Av	3.812		6.208		5.952		4.9		4.924		4,792	
SD	1 25376766		2 05059341		1 73400308		1 55509914		1 88553264		1 238588	

Wire Bond Pull Strength ENIG vs ENEPIG Average & Standard Deviation

Location Au Wire Bond Failure ENIG vs ENEPIG

Gold Wiring Bonding To Electroless Pd/Immersion Gold

MTO Electroless Pd Bonding Test

Test Parameters:

- Bonder: AB356 Automatic Gold Wire Ball Bonder
- Wire: 99.99% Gold , Size=1 mil, T.S.=10-15 gm
- Capillary: GAISER Tool Company (1572-17-437GM-20D)

Test Results:

- 2 breaks of 50 samples at "A" or "E" locations
- Ave pull acceptable in all thickness
- Pull strength goes up with higher Pd thickness.

Au Wire Bond Results

- Acceptable wire bond with over 5 micro inches of Pd.
- Au thickness plays a role in wire bonding even to thick Pd
- Future Work
 - Test 0.8 mil Au wire
 - Au thickness on electroless Pd
 - Evaluate Au wire/Pd interface & impact of aging on bond strength

Why Electroless Palladium

- Improve Process
 Window For Lead Free
 Solderer
 - Wider window on EN
 - Protection of EN
 - Intermetallic
- Encapsulated wire bonding of fine features
- Low contact resistance but more Au dependent

Special Thanks

Mr. Matt Sylvestry: Technic For Sample Prep
Mr. Denis Morressey & Mr Dave Jenson: Technic For wetting balance and contact resistance
Mr. Ben Mikulis: Advanced Microelectronics Inc For wire bonding

Thank You For Your Attention

Questions?

