Vibration and Mechanical Shock Testing Thomas Woodrow

Executive Summary

Little data has been generated on the performance of lead-free solders under vibration and mechanical shock. What data exists suggests that lead-free solders may be less reliable than eutectic SnPb solder when used on area array components (e.g., BGA's). This presentation is designed to educate the audience on how vibration and mechanical shock tests are typically conducted and on how to interpret test results. Test data from the literature and from several lead-free consortia will also be presented.

Vibration and Mechanical Shock Testing

Tom Woodrow, Ph.D. Boeing Research & Technology

> IPC Midwest Conference September 20-24, 2009

Vibration

Electrodynamic Shaker

Shaker with Slip Table Attached

Input At A Given Frequency

In Random Vibration, Most of the Damage is Caused by a Few Percent of the Cycles

Typical Test Setup for LRU Vibration Qual Test

Minimum Structural Integrity Test for Fighter Aircraft x

7.7 Grms for 1 Hour

Endurance Test for Fighter Aircraft x

10.0 Grms for 2 Hours

Design of a Qual Test Based on a Desired Field Life

Must have the Solder S-N Plot (Slope = -1/b)

Source: Steinberg, Dave S., Vibration Analysis for Electronic Equipment, 2nd Edition, John Wiley & Sons, Inc., 1988.

JCAA/JG-PP Lead-Free Vibration Test JG-PP Test Vehicles in Fixture

JG-PP Test Vehicles in Vibration Fixture (20 Grms Test Level – Random Vibration)

JG-PP Vibration Test Stress Step Levels

Input (14.0 Grms, Z-axis)

14:52:47 01-Sep-2004 TN#2052 1st set of 15 Circuit Boards Run#5 Level # 3 14.0 Grms, Z-axis, Operator: TDK

Test Name: tn2052_NoLead_PWA.019

Test Vehicle Response (14.0 Grms, Z-axis)

14:53:15 01-Sep-2004

Run#5 Level # 3 14.0 Grms, Z-axis, Operator: TDK Test Name: tn2052_NoLead_PWA.019

Vibration Test First Mode (72 Hz)

Vibration Test Second Mode (101 Hz)

Vibration Test Seventh Mode (411 Hz)

Vibration Test Mode (573 Hz)

No Lead Circuit Card - 10grms Input - 573Hz Mode

+Z

Domain

Signal

-500

Inst Value

FFT

nm 500

Vib Displacement

Peak Strains on Test Vehicle for the First Mode (1 G Sine Dwell)

Solder Joints Fail First in Regions of High Strain

The yellow BGA will last 500 times longer than the red BGA simply due to position on the board (at a constant test level).

BGA Failure Data from the JG-PP Vibration Test

PDIP Failure Data from the JG-PP Vibration Test

Why HALT Should Not Be Used For Vibration Qual Tests

HALT uses pneumatic hammers to produce the vibration. Very large G spikes are generated which are not seen with an electrodynamic shaker. Reported G levels are actually a time averaged value.

HALT spectrum has "holes" in it which are not seen with an electrodynamic shaker. If a PWA resonance is at the same frequency as a hole, little damage will be done.

Source: UNHOLTZ-DICKIE CORPORATION

Mechanical Shock

Mechanical Shock Testing of Pb-Free PWA's Has Revealed Several Issues

- SAC is less shock resistant than SnPb.
- Pad cratering under BGA's. Pad cratering is much more prevalent with SAC than with SnPb. SAC transmits more energy to the PWB which fractures the laminate and breaks traces.
- SAC fragility (an abnormal failure mechanism).
 Premature failure of SAC BGA's due to "Kirkendall" void formation during thermal aging. Believed to be a problem with the copper plating.

Drop Tester

Cell phone industry discovered that SAC305 had poor drop shock performance. Newly developed alloys perform better in drop shock but may be worse in thermal cycle.

Drop Test Performance (Mean value)

Source: W. Liu, N.-C. Lee, "Novel SACX Solders with Drop Test Performance Outperforming Eutectic Tin-Lead", APEX2007

Mechanical Shock Testing on Military Aircraft

- Use an electrodynamic shaker or hydraulic shock machine
- Use a Shock Response Spectrum (SRS) which defines the acceleration at each frequency
- 6 shocks in the axis of interest

Shock Response Spectrum

Pulse used to generate the SRS on the ED Shaker

NASA/DoD Mechanical Shock Test (300 G's)

NASA/DoD Mechanical Shock Test Results (BGA U21)

Test Vehicle ID	Solder/BGA Ball	Shocks Survived at Each Test Level (100 shocks per level in the Z-axis)								
		20 G's	40 G's	75 G's	100 G's	200 G's	300 G's	300 G's	300 G's	300 G's
"Manufactured" (ImAg)	0.0.0005/0.0.0.05	100	400	100	100	100				
75	SAC305/SAC405	100	100	100	100	100	1			
90	SAC305/SAC405	100	100	100	100	100	30			
89	SAC305/SAC405	100	100	100	100	100	55			
88	SAC305/SAC405	100	100	100	100	100	76			
91	SAC305/SAC405	100	100	100	100	100	78			
30	SnPb/SnPb	100	100	100	100	100	14			
31	SnPb/SnPb	100	100	100	100	100	14			
32	SnPb/SnPb	100	100	100	100	100	42			
33	SnPb/SnPb	100	100	100	100	100	51			
34	SnPb/SnPb	100	100	100	100	100	68			
"Rew <mark>ork" (ImAg)</mark>	These components were reworked									
191	Flux Only/SAC405	Bad								
190	Flux Only/SAC405	100	100	100	100	100	6			
193	Flux Only/SAC405	100	100	100	100	100	7			
192	Flux Only/SAC405	100	100	100	100	100	8			
189	Flux Only/SAC405	100	100	100	100	100	24			
151	Flux Only/SnPb	100	100	100	100	100	6			
153	Flux Only/SnPb	100	100	100	100	100	11			
149	Flux Only/SnPb	100	100	100	100	100	18	16.7		
152	Flux Only/SnPb	100	100	100	100	100	18			
150	Flux Only/SnPb	100	100	100	100	100	26			
"Rework" (ENIG)										
160	Flux Only/SnPb	100	100	100	100	100	47	1 2	£	
	Reworked 1X									
	Reworked 2X									
	Reworked 3X									

- SAC is less reliable than SnPb in vibration for area array components.
- SAC less reliable than SnPb in mechanical shock for some components (?).
- Don't put vibration/shock sensitive components (e.g., BGA's) on areas of high PWA curvature.
- Accelerated testing will need to be redesigned to mimic actual field lifetimes.

OIPSTIONSP

Tom Woodrow, Ph.D. Boeing Research & Technology

> IPC Midwest Conference September 20-24, 2009

