IPC Electronics Midwest 2010

Integrating Cleaning Equipment and Cleaning Agent for Maximum Performance

Mike Bixenman, Ph.D. Kyzen Corporation

Biography:

Mike Bixenman is the Chief Technology Officer of Kyzen Corporation. Mike owns four earned degrees including a Doctorate of Business Administration from the University of Phoenix.

Executive Summary

The growing complexity of electronic assemblies increases the cleaning challenge due to miniaturization, lower component gaps, and improved flux designs. The need to remove ionizable contaminants is critical to production yields and reliability. As user's source cleaning equipment and cleaning agents to meet these increased cleaning demands, a number of options must be considered such as batch versus inline, cleaning agent designs, impingement options, controlling the cleaning agent, rinsing, drying, and waste management. The purpose of the research paper is to provide operational data for integrating aqueous cleaning equipment and cleaning agent for maximum performance. The conference participates will gain knowledge of batch and inline aqueous cleaning equipment designs, cleaning agent, managing rinse water, and waste management.

Contact Information:

430 Harding Industrial Drive Nashville, TN 37211 USA 615-831-0888 615-831-0889 mike_bix@kyzen.com

Integrating Cleaning Agent and Cleaning Equipment for Maximum Performance

Dr. Mike Bixenman Chief Technology Officer Kyzen Corporation

CANON COMMUNICATIONS LLC

Agenda

- Cleaning Laws
- Soil Changes
- Cleaning Agent / Equipment DOE
- Matching Cleaning Agent to Soil
- Repeatable & Reproducible Process

CANON COMMUNICATIONS LLC

1st Law of Cleaning

Cleaning Agent – Mechanical Impingement = Internal Energy

2nd Law of Cleaning

[Pressure + Flow + Directional Forces] + Cleaning Agent = Increased Performance

High Pressure Fan Nozzle

High Pressure Coherent Nozzle

Poorly Matched Cleaning Agent + Mechanical Energy = Poor Cleaning

Soil Effects

Flux Types

- RMA ~ 5% Market Share
 - Rosin based with mild activation
 - Cleaned post soldering
- Water Soluble ~ 10% Market Share
 - Flux residue must be cleaned post soldering
 - DI water specified for cleaning
 - Additive may be needed to clean
- No Clean ~ 85% Market Share
 - Flux residue is benign
 - Many leave on PCB post soldering
 - Cleaned post soldering

CANON COMMUNICATIONS LLC

Source: Jenson, 2010

Flux Compositions

New Flux Designs

- Miniaturization and Lead-Free Drive Change
 - Flux Consistency
 - Oxide
 - Oxygen Penetration Path
 - Flux Burn Off
 - Wetting Speed
 - Spattering
 - Soldering Under Air

Source: Lee, 2010

Issues of Concern for Cleaning

Profile

- Ramp rate and soak time
- Peak Temperature
- Environment (air vs. nitrogen)
- Flux exhaustion
 - Total heat input
 - Burn-off
 - Oxidation at the leading edge

- Flux composition
 - Rosin versus Resin
 - Halide versus Halide Free
 - Rheological Additives
 - Natural/Petrolatum waxes
 - Synthetic polymers
 - Caster oil derivatives
 - Thixotropic agents
- Low Gap Components
 - 2 mils and lower gaps
 - Flux dams underside

Source: Jenson, 2010

Profile

- Ramp Soak Spike
 - Oxidation occurs entire time in preheat and soak stages
 - Oxidation barrier critical
 - Harder to Clean

- Ramp to Spike
 - Flux vehicle maintained throughout preheat stage
 - HIP, transfer efficiency, & voiding concerns
 - Easier to clean

Flux Exhaustion

- Volatilization of flux components
 - Sensitive to high density / miniaturization
 - Increases with decreasing flux quantity deposited
- Solution: Flux employed for finer pitch needs to be
 - More non-volatile
 - High molecular weight materials needed
- Increases cleaning difficulty

Flux Composition

- Rosin
 - Carboxylic acid structure
 - Easier to clean due to
 - Hydrogen bonding
 - Polarity

- Resin
 - Aromatic structures
 - Polar covalent
 - Harder to clean
 - Higher solvency needed

(+)-α-pinene

-16-

Low Gap Components

- Leadless chip carriers
- Flush mounted chip caps
- Area array components
- Capillary action and surface tension fill the underside of the components with flux residue
- Increase time needed to clean

Hard versus Soft Residue

• Time is a critical factor when cleaning hard residue

Difficult to Clean Flux Residue

Soft Easily Cleaned Flux Residue

CANON COMMUNICATIONS LLC

Cleaning Agent / Equipment DOE

DOE

- Cleaning Equipment
 - Ultrasonic 80 KHz
 - Spray under Immersion @ 50
 PSI
 - Batch Spray in Air @ 45 PSI
 - Planar Spray in Air @ 70 PSI
- Solder Pastes
 - Water Soluble ~ 7 Lead-Free
 - Rosin ~ 3 Tin-lead
 - No Clean
 - 5 Tin-Lead
 - 8 Lead-Free

- Cleaning Agents
 - Ultrasonic
 - Aqueous @ 20%
 - 2 ~ Semi-Aqueous @ 100%
 - Spray under Immersion
 - Aqueous @ 20%
 - 2 ~ Semi-Aqueous @ 100%
 - Batch Spray in Air
 - 4 ~ Aqueous @ 10%
 - Planar Spray in Air
 - 1 ~ Aqueous @ 15%
 - 2 Spray Manifold Configurations

Test Card Design

CANON COMMUNICATIONS LLC

- Size: 3.0" X 4.0" X .060"
- FR-4 with LPI Solder Mask
- IPC Specified Pad Geometry's and Sizes
- Chip caps utilized:
- 1210SMR .5 mil stand-off
- 1825SMC 1.0 mil stand-off

1210 Chip Caps

- Sealed on two sides
- Flux fills the components underside
- Must break dam to clean underside

1825 Chip Caps

- Sealed on two sides
- Flux fills the components underside
- Large surface area
 - Increases cleaning challenge

DOE Matrix

C - A	Energy	Power	Conc.	Temp	Time	1210 Sites	1825 Sites	Response % Clean
A-1	Ultrasonic	80 KHz	20%	140F	10 min.	18	18	
SA-1	Ultrasonic	80 KHz	100%	140F	10 min.	18	18	
SA-2	Ultrasonic	80 KHz	100%	140F	10 min.	18	18	

C - A	Energy	Power	Conc.	Temp	Time	1210 Sites	1825 Sites	Response % Clean
A-1	SUI	80 KHz	20%	140F	10 min.	18	18	
SA-1	SUI	80 KHz	100%	140F	10 min.	18	18	
SA-2	SUI	80 KHz	100%	140F	10 min.	18	18	

DOE Matrix

C - A	Energy	Power	Conc.	Temp	Time	1210 Sites	1825 Sites	Response % Clean
Neutral	Batch SIA	45 psi	10%	150F	10 min.	18	18	
MS-HA	Batch SIA	45 psi	10%	150F	10 min.	18	18	
MS-MA	Batch SIA	45 psi	10%	150F	10 min.	18	18	
HS-LA	Batch SIA	45 psi	10%	150F	10 min.	18	18	

DOE Matrix

C - A	Energy	Power	Conc.	Temp	Time	1210 Sites	1825 Sites	Response % Clean
HS-LA	SIA-1	70 psi	15%	150F	0.5 FPM	18	18	
HS-LA	SIA-1	70 psi	15%	150F	1.0 FPM	18	18	
HS-LA	SIA-1	70 psi	15%	150F	1.5 FPM	18	18	
HS-LA	SIA-2	70 psi	15%	150F	0.5 FPM	18	18	
HS-LA	SIA-2	70 psi	15%	150F	1.0 FPM	18	18	
HS-LA	SIA-2	70 psi	15%	150F	1.5 FPM	18	18	

Inferences from Data

- 1. Flux residue compositions have changed
- 2. Lead-Free flux forms a hard residue
- 3. Hard residue requires increased wash time
- 4. Hard residue requires increased dispersion
- 5. Impingement energy is critical for removing residues under low gap components

Match Cleaning Agent to Soil

Cleaning Agent

- Critical differentiator
- The static rate
 - "Cleaning agent dissolves residue in the absence of energy"
 - Correlates to wash time
- Static rate needs improvement on Lead-Free no-clean flux residues

Improved Static Rate

- Water is the universal solvent from which to build the ideal properties
 - High dielectric strength
 - Dissolves ionic salts
 - Solvates ions
 - Binds ions and delocalizes charge density
- Intermolecular forces
 - Ingredients that improve the electrostatic attraction of the cleaning agent for the polar constituents within the flux residue
 - Building blocks that hydrogen bond with polar residues and ions within the flux residue composition

Intramolecular Forces

- Ingredients with partial solubility in water improve cleaning on non-polar resin and rheological additives
- Materials that form an unusual behavior in water
 - A portion of the molecule likes water
 - A portion of the molecule likes flux resins
- Two phase fluid flow improves the static rate on no-clean lead-free flux residues

CANON COMMUNICATIONS LLC

Inferences from the Data

- 1. Flux residues are multi component mixtures
- 2. No-Clean Lead-Free flux compositions require higher dispersion forces to clean
- 3. Cleaning agents with properties that are attracted to the flux residue component mixtures improve the static cleaning rate
- 4. % Clean under Low Gap components increases with improved static cleaning rates

Gage R&R

Efficient Cleaning Processes

- Require a study of random effects from
 - Upstream factors
 - Downstream factors
- Once factors have been identified
 - Set up a series of DOEs to measure system variability induced by design factors and levels
- Process window is established from
 - Interactions of the data
- The cleaning system goal
 - Repeatability
 - Reproducibility over time

Upstream and Downstream Factors

- Capture sources of measurement variation
- Analyze the interactions between the
 - Cleaning agent
 - Cleaning machine
 - Electronic assembly
 - Specification requirements
 - Materials compatibility
 - Operator
 - Method
- Access the precision of the cleaning system

CANON COMMUNICATIONS LLC

Concluding Remarks

- Cleaning PCBs requires both
 - Cleaning Agent
 - Cleaning Machine
- Cleaning machine studies find the following critical factors
 - Wash pressure needed to penetrate low gaps
 - Wash flow needed to move cleaning agent through low gaps
 - Wash time is needed to remove all residue under low gaps
- Cleaning agents matched to the residue
 - Increase the static cleaning rate
 - Open the process window
- Gage R&R
 - Identify and measure factors to define process window

Questions

 Dr. Mike Bixenman Chief Technology Officer Kyzen Corporation mikeb@kyzen.com

References

- 1. Jensen, T. (2010, July). Head-in-Pillow Defect. Flextronics Engineering Conference. Guadalajara, MX.
- 1. Lee, N.C. (2002). Reflow Soldering Processes and Troubleshooting SMT, BGA, CSP and Flip Chip Technologies. Butterworth-Heinemann.
- 1. Lee, N.C. (2009). Lead-Free Flux Technology and Influence on Cleaning, SMTAI, San Diego

CANON COMMUNICATIONS LLC

