IPC Electronics Midwest 2010

Drop Testing of a Pb-Free Board after Assembly and SnPb-Rework

Eva Kosiba

Celestica

<u>Biography:</u> Materials Lab Engineering Advisor

Eva graduated from the University of Toronto with a Bachelor of Engineering (Metallurgy and Material Sciences). She has over 10 years of experience at Celestica and is presently working in Performance Innovation Materials Lab. Previous roles at Celestica include Commodity Management, Supplier Quality Engineer and Project Manager of the Green Services[™] team.

Contact Information

Eva Kosiba Celestica 844 Don Mills Road Toronto, ON M3C 1V7 Canada 416-443-7495 416-448-3029 ekosiba@celestica.com

Drop Testing of a Pb-Free Board After Assembly and SnPb-Rework

P. Snugovsky, J. Bragg, E. Kosiba, M. Thomson, B. Lee, R. Brush,

S. Subramaniam, M. Romansky

Celestica International Inc.

*A. Ganster, #W. Russell, **J. P. Tucker, **C. A. Handwerker, ##D.D. Fritz
 *Crane NSWC, #Raytheon, **Purdue University, ##SAIC

CANON COMMUNICATIONS LLC

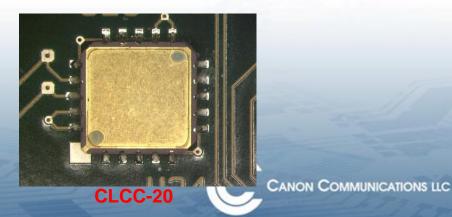
- Pb-free: reality for military applications due to part constraints
- Harsh environments have high mechanical reliability requirements
- Mechanical reliability concerns due to:
 - Greater functionality = higher I/O = smaller pitch size
 - Pb-free COTS interconnects prone to brittle fracture
 - Little known about the affect of rework
 - Even less known about rework of Pb-free joints with SnPb
- Robustness of electronics in harsh
 environments includes drop testing
 - Evaluate high strain and strain rate conditions

- Investigate specific need of the military
 - Mechanical shock robustness of non-BGA, Pb-free components reworked with SnPb solder
- Military prefers one rework solution in the field
- Simpler than controlling both SnPb and a Pbfree rework processes

Project Overview

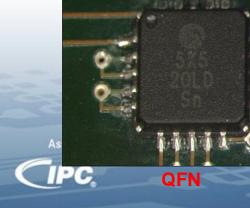
- Board-level drop shock test was performed on 9 assemblies
 - 63 parts / board
 - Parts representative of military package styles
- Assembled on Pb-free compatible laminate with SAC 305 solder
- Selection of the non-BGA parts reworked with SnPb solder
- Metallurgical characterization
- Assemblies fixtured to drop table and subjected to 500Gs for a total of 20 drops
- In-situ shock response, net resistance and strain recorded
- Physical FA performed to characterize mechanical damage

Test Vehicle Details


- Test vehicle designed by:
 - Joint Group on Pollution Prevention (JG-PP)
 - National Aerospace Agency (NASA)
 - Department of Defense (DoD)
- Designed to meet IPC-6012, Class 3 requirements
 - 6 layer board with 0.5-ounce copper
 - Pb-free FR4 laminate as per IPC-4101/26
 - Minimum Tg of 170° C
 - Immersion Ag finish
- 9 assemblies selected for this rework study

Experimental -Test Vehicle

	Package	Ball or Finish	Dimensions (mm x mm)	Pitch (mm)	TV-Drop
-	PBGA225	SAC405	27 x 27	1.5	U02, U04, U04, U06, U18, U21, U43, U44, U55, U56
	CSP100	SAC 105	10 x 10	0.8	U19, U32, U33, U35, U36, U37, U42, U50, U60, U63
	TQFP-144	Matte Sn	20 x 20	0.5	U01, U03, U07, U20, U31, U34, U41, U48, U57, U58
		Sn	10.16 x 20.95	0.8	U12, U25, U29, U39, U61
	TSOP-50	SnBi	10.16 x 20.95	0.8	U16, U24, U26, U40, U62
	PDIP-20	NiPdAu	7.5 x 26.16	2.54	U8, U23, U49
		Sn	7.5 x 26.16	2.54	U11, U30, U38, U51, U59
	CLCC-20	SAC305	9 x 9	0.8	U09, U10, U13, U14, U17, U22, U45, U46, U52, U53
-	QFN	Matte Sn	5 x 5	0.65	U15, U27, U28, U47, U54

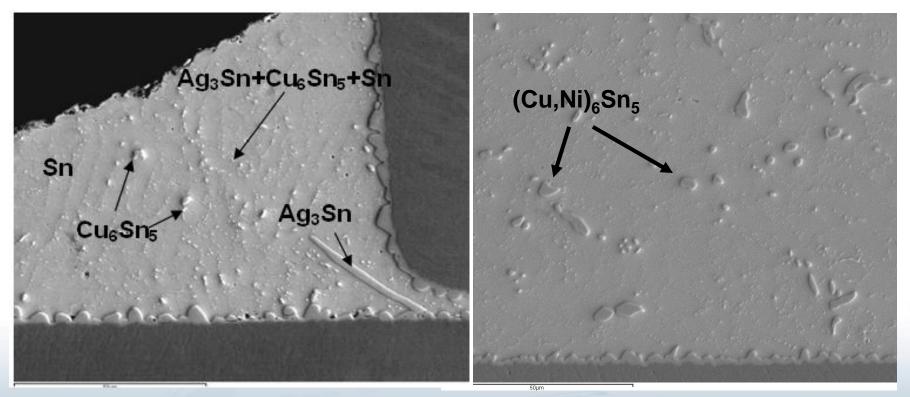


Rework Procedure

- Conductive, solder iron based rework on:
 - 1. TSOP
 - 2. TQFP
 - 3. CLCC (tack wrap procedure)
- Conductive processes as per IPC-7711:
 - Solder wicking & vacuum extraction
 - Heat, lift part, pad cleaning
 - Part placement & fluxing
 - Drag solder replacement & cleaning
- Convective, hot air rework for QFN devices

- Investigated metallurgy of 3 parts:
 - 1. TQFP (Cu lead frame)
 - 2. TSOP (alloy 42 lead frame)
 - 3. QFN (Cu lead frame)

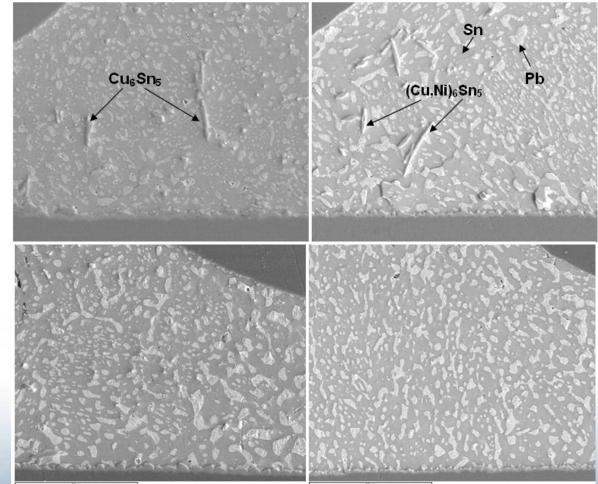
• Investigated under 3 conditions:


- 1. As-assembled SAC 305
- 2. 1x rework with SnPb solder
- 3. 2x rework with SnPb solder
- SEM / EDX was used to characterize intermetallics

Microstructure Characterization

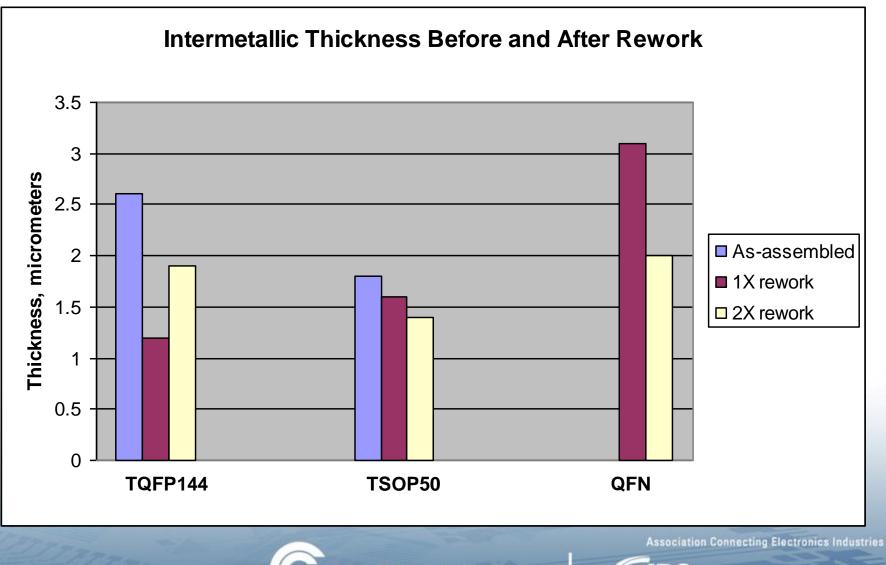
Microstructure of SAC305 solder joints before rework (SEM 1000x) LHS = TQFP (Cu), RHS = TSOP (alloy 42)

CANON COMMUNICATIONS LLC



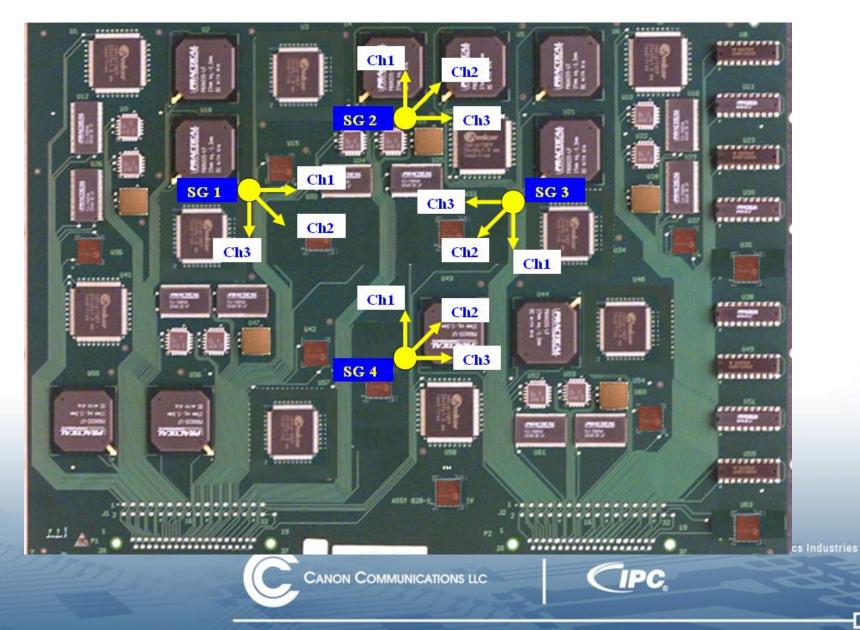
Microstructure after Rework

2x



Microstructure of SAC 305 reworked using SnPb solder (SEM, 1000x) LHS = TQFP (Cu), RHS = TSOP (alloy 42)_{clation Connecting Electronics Industries}

CANON COMMUNICATIONS LLC



CANON COMMUNICATIONS LLC

Experimental – Drop Test

Experimental – Drop Test

Drop Table with Fixtured Test Vehicles

CANON COMMUNICATIONS LLC

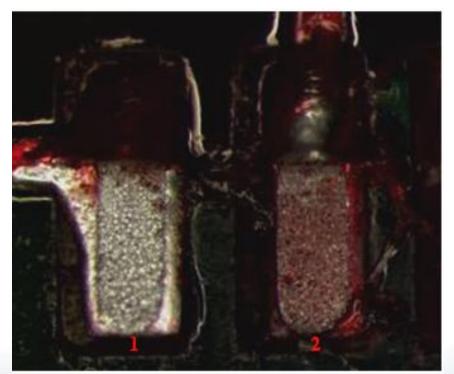
- Vast majority of electrical failures on PBGAs
 - Wide range in # of drops until failure
 - In-situ electrical **38%** (34/90) failed \leq 5 drops
 - Suggests mechanical failure very few drops
 - 99% (89/90) failed electrically after 20 drops
 - PBGA physical FA will be part of future work
- All 90 CSPs electrically passed drop testing
- 477 non-BGA components were tested
 - only 4 electrically failed after 20 drops

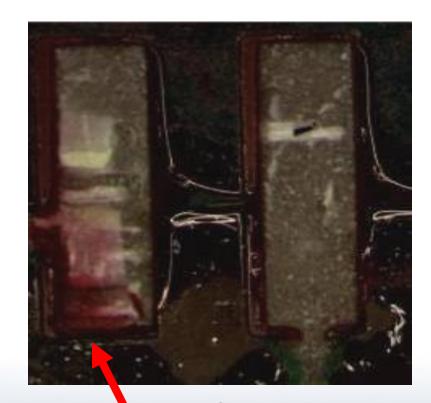
Rework History of Electrical Fails

- Only 4 non-BGA electrical fails (< 1%)
 - Board SN 84, CLCC-20, U14 was not reworked
 - Board SN 85, TQFP 144, U57 was reworked once with SnPb
 - Board SN 85, PDIP-20, U8 was reworked once with SnPb
 - Board SN 86, QFN-20, U15 was reworked twice with SnPb

Mechanical Failures

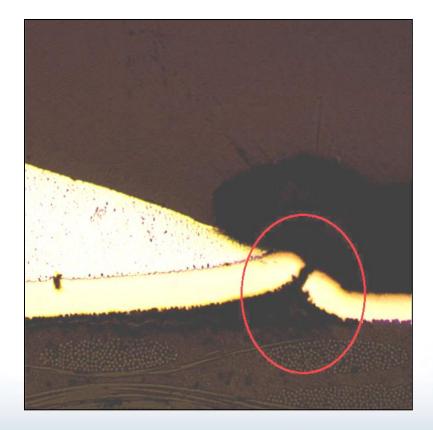
Experimental – Physical FA


- Remaining 8 cards:
 - 23 parts dye & pried
 - 15 parts cross-sectioned
- Dye & pry and cross-sectioning was used to determine the:
 - Failure location
 - Failure mode, and
 - Failure mechanism
- Only non-BGA components were examined in this exercise



Summary of FA Results

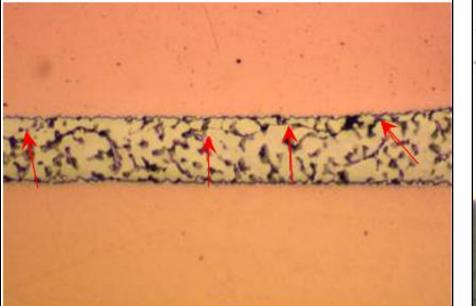

Solder Fracture, Full Dye Penetration (QFN, lead 2)

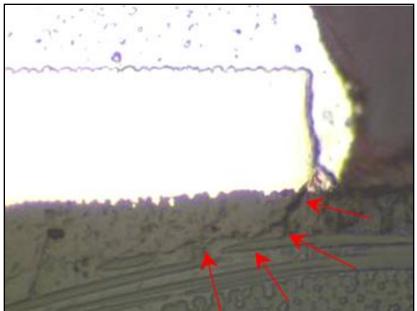

CANON COMMUNICATIONS LLC

Pad Crater, Partial Dye Penetration (CLCC) Association Connecting Electronics Industries

Summary of FA Results

Solder Fracture (TQFP-144, 1x rework)




Pad Crater with Trace Break (CLCC)

Association Connecting Electronics Industries

Summary of FA Results

Partial Solder Fracture (QFN-20, 2x rework)

Partial Pad Crater (QFN-20, 1x rework)

CANON COMMUNICATIONS LLC

- Majority of non-BGA components survived drop testing
 - In-field rework of Pb-free parts with SnPb solder did not affect mechanical robustness
 - components reworked with SnPb solder are no less reliable than their Pb-free as-manufactured counterparts
- Both electrical and mechanical damage was at a minimum for non-BGA parts
 - Predominant failure mechanism was pwb-side pad cratering
- Electrical inspection not sufficient to assess mechanical robustness
 - ~1/3 of parts that passed electrical test had mechanical damage
- Drop testing showed early in-situ BGA electrical failures
 - mechanical damage may occur after only a few drops on BGAs

CANON COMMUNICATIONS LLC

- Follow-on NASA DoD Pb-free projects:
 - Failure analysis of the BGAs
 - Drop testing on reworked BGAs
 - Results of ATC & vibration testing
 - Future drop testing of non-BGAs will employ a larger number of drops per board

Acknowledgements

The authors would like to thank the following individuals for assistance with the failure analysis:

Jie Qian and Zohreh Bagheri (Celestica)

Thank You

