The Institute for Interconnecting and Packaging Electronic Circuits 2215 Sanders Road • Northbrook, IL 60062-6135

IPC-TM-650 TEST METHODS MANUAL

1.0 Scope

1.1 This High Performance Liquid Chromatography (HPLC) procedure outlines the analysis of rosin flux residues remaining on a printed wiring board (PWB) after defluxing. This test can be used for the evaluation of processes used to clean rosin based soldering fluxes.

Applicable Documents

IPC-TP-383 "Organic Surface Contamination - Its identification Characterization, Record Effects on Surface Insulation Resistance and Conformal Coating Adhesion."

1PC-TR-580 "Cleaning and Cleanliness Test Program Phase 1 Results."

3.0 Test Specimens

3.1 Printed wiring board (PWB) for extraction

4.0 Apparatus and Materials

- **4.1** HPLC systems with UV detection
- **4.2** Waters C18 Novapak column, or equivalent
- **4.3** Suitable extraction vessel, KAPAK® bag, or equivalent, to extract PWB
- 4.4 Volumetric Flasks
- 4.5 Acetonitrile, HPLC grade
- 4.6 Deionized water, HPLC grade
- **4.7** Rosin Standards: abietic acid, dehydroabietic acid, neoabietic acid (Helix BioTech, 604-270-7468, Aldrich Chemical, Alltech Associates)
- 4.8 2-Propanol (IPA), HPLC grade
- 4.9 Sodium phosphate monobasic, NaH2PO4oH20)
- **4.10** Hot water bath, $80^{\circ} \pm 5^{\circ}$ C

Number 2.3.27.1		
Subject Rosin Flux Residue Analysis—HPLC Method		
Date 1/95	Revision	
Originating Task Group New Methods Task Group (5-32f)		

5.0 Procedure

- **5.1** Extraction
- **5.1.1** Record area of PWB. General rule on surface area is (length x width x 2)+10% for a populated PWB.
- **5.1.2** Place processed PWB in extraction bag, or equivalent
- **5.1.3** Prepare 75/25 (by volume), IPA/H20 solutions for the extraction
- **5.1.4** Add 75-200 mls of IPA/H20 solution to extraction bag, enough to cover PWB.
- **5.1.5** Heat seal bag and place in water bath at $80^{\circ} \pm 5^{\circ}$ C for 1 hour (cut vent hole in bag).
- **5.1.6** Dilute (with IPA/ $\rm H_2O$ solution) or concentrate extract to get approximately 100 ml of extract per 35 sq inch of PWB area.
- **5.1.7** Extract unprocessed PWB blank, in same manner as sample.
- **5.2** Standard and sample analysis
- **5.2.1** Set HPLC instrument conditions as follows:

(The two wavelengths are needed to get optimum
response from all constituients. See attached cromato-
grams.)
Column temp 60°C
Mobile phase Acetonitrile/water 60/40
25 millimolar Na ₂ PO ₄ H ₂ C
Flow rate
Sample size
(Instrument conditions may be changed to optimize
separation)

Wavelength 220 & 240 nanometers

- **5.2.2** Prepare standards of known concentration
- **5.2.3** Establish retention times and areas of rosin standards

IPC-TM-650				
Number	Subject	Date		
2.3.27.1	Rosin Flux Residue Analysis—HPLC Method	1/95		
Revision				

- **5.2.4** Prepare calibration curves for each of the identifiable peaks in the extract chromatogram.
- **5.2.5** Run extracts obtained in 5.1
- **5.3** Calculation of residue concentration
- **5.3.1** Concentration of material in solution (milligrams/liter) = (AxBxC)/(DxE)
 - A = Area of material peak
 - B = Concentration of standard (milligrams/liter)
 - C = Injection volume of standard (microliters)
 - D = Are of standard peak
 - E = Injection volume of sample (microliters)

Residual material {(micrograms/inch squared)(ug/in2)} = ((FxG)/H)x1000ug/mg

- F = Concentration of material in solution (milligrams/liter)
- G = Volume of extract solvent (liter)
- H = PWB surface area (square inch)

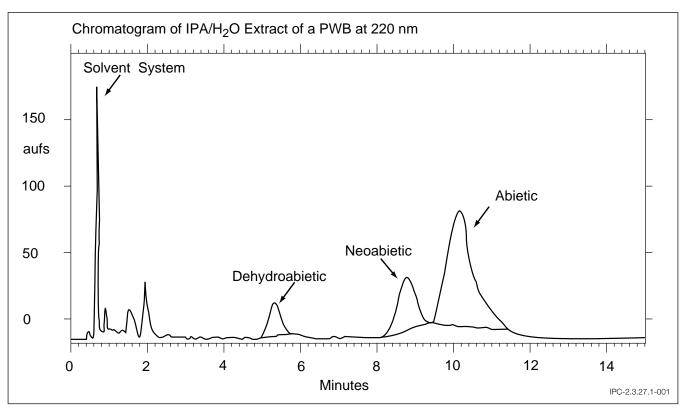


Figure 1

IPC-TM-650			
Number	Subject	Date	
2.3.27.1	Rosin Flux Residue Analysis—HPLC Method	1/95	
Revision			

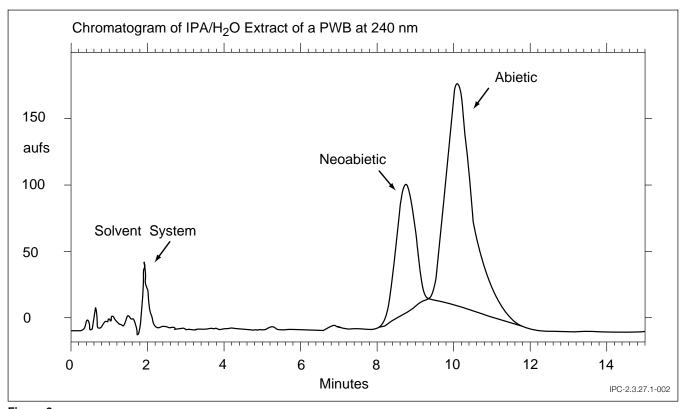


Figure 2