

Taiwan Union Technology

TEST REPORT

CLIENT:	IPC Validation Services		
	3000 Lakeside Drive		
	Suite 105N		
	Bannockburn, IL 60015 USA		
	Attention: Mr. Randy Cherry		
	+1-847-597-5606		

TEST ITEMS:Peel Strength, Volume Resistivity, Surface Resistivity, Moisture Absorption,
Dielectric Breakdown, Permittivity and Loss Tangent, Flexural Strength, Arc
Resistance, Thermal Stress, Electric Strength, Vertical Flammability Test, Glass
Transition Temperature, Decomposition Temperature, Z-Axis CTE (TMA), Time
to Delamination (T260, T288, T300), Glass Transition Temperature (DMA),
Dimensional Stability, Solderability, Chemical Resistance, Metal Surfaces
Cleanability, Pressure Cooker Test.

SAMPLE: Copper-Clad Laminate

TEST MATERIAL: TU-885

SPECIFICATION: IPC-4101E WAM1/134

TEST RESULTS: The specimens were tested by the indicated test methods within this report. The actual detailed test results are enclosed.

DATE OF REPORT: 16 August 2022

Taiwan Union Technology

SUMMARIZED TEST RESULTS:

Test Item	Thin	Thick	
Peel Strength	Pass	Pass	
Volume Resistivity	Pass	Pass	
Surface Resistivity	Pass	Pass	
Moisture Absorption		Pass	
Dielectric Breakdown		Pass	
Permittivity	Pass	Pass	
Loss Tangent	Pass	Pass	
Flexural Strength		Pass	
Arc Resistance	Pass	Pass	
Thermal Stress	Pass	Pass	
Electric Strength	Pass		
Vertical Burning Test	Pass	Pass	
Glass Transition Temperature		Pass	
Decomposition Temperature		Pass	
Z-Axis CTE (TMA)		Pass	
Time to Delamination		Pass	
Dimensional Stability	Pass	Pass	
Solderability		Pass	
Chemical Resistance	Report Only	Report Only	
Metal Surface Cleanability		Report Only	
Pressure Cooker Test		Report Only	

Taiwan Union Technology

Peel Strength

Reference:

IPC-TM-650 Method 2.4.8 Peel Strength of Metal Clad Laminates IPC-TM-650 Method 3.4.8.3 Peel Strength of Metal Clad Laminates at Elevated Temperature IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 1 Peel Strength After Thermal Strength Thin

Side A Cross-Wise and Length-Wise Average	0.78	
Side B Cross-Wise and Length-Wise Average	0.75	
Requirement	<u>≥</u> 0.70	Pass

Table 2 Peel Strength After Thermal Strength Thick

Side A Cross-Wise and Length-Wise Average	0.79	
Side B Cross-Wise and Length-Wise Average	0.77	
Requirement	<u>></u> 70	Pass

Table 3 Peel Strength At Elevated Temperature Thin

Side A Cross-Wise and Length-Wise Average	0.73	
Side B Cross-Wise and Length-Wise Average	0.71	
Requirement	<u>></u> 0.70	Pass

Table 4 Peel Strength At Elevated Temperature Thick

Side A Cross-Wise and Length-Wise Average	0.72	
Side B Cross-Wise and Length-Wise Average	0.71	
Requirement	<u>≥</u> 0.70	Pass

Taiwan Union Technology

Table 5 Peel Strength After Process Solutions Thin

Side A Cross-Wise and Length-Wise Average	0.72	
Side B Cross-Wise and Length-Wise Average	0.71	
Requirement	<u>></u> 0.70	Pass

Table 6 Peel Strength After Process Solutions Thick

Side A Cross-Wise and Length-Wise Average	0.72	
Side B Cross-Wise and Length-Wise Average	0.73	
Requirement	<u>></u> 0.70	Pass

Table 7 Peel Strength As Received Low Profile Copper Thin

Side A Cross-Wise and Length-Wise Average	0.75
Side B Cross-Wise and Length-Wise Average	0.73
	No Dogujerov ost
	Requirement

Table 8 Peel Strength As Received Low Profile Copper Thick

Side A Cross-Wise and Length-Wise Average	0.74
Side B Cross-Wise and Length-Wise Average	0.72
	No
	Requirement

Taiwan Union Technology Volume & Surface Resistivity

Reference:

IPC-TM-650 Method 2.5.17.1 Volume and Surface Resistivity of Dielectric Materials IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 9 Volume and Surface Resistivity Humidity Conditioning Thin

Volume Resistivity	Average of three specimens	2.28 E+09	
Requirement C-96/35/9	0	<u>></u> 1.00 E+06	Pass
Surface Resistivity	Average of three specimens	5.17 E+08	
Requirement C-96/35/9	0	<u>></u> 1.00 E+05	Pass

Table 10 Volume and Surface Resistivity At Elevated Temperature Thin

Volume Resistivity	Average of three specimens	1.85 E+08	
Requirement 125°C		<u>></u> 1.00 E+06	Pass
Surface Desistivity	Assessed of these secsions	5.84 E+07	
Surface Resistivity	Average of three specimens	> 1.00 E+05	
Requirement 125°C		—	Pass

Table 11 Volume and Surface Resistivity Humidity Conditioning Thick

Volume Resistivity	Average of three specimens	2.07 E+08	
Requirement after mois	ture	1.00 E+05	Pass
Surface Resistivity	Average of three specimens	2.38 E+08	
Requirement after mois	ture	<u>></u> 1.00 E+06	Pass

台耀科团设份有限公司

Taiwan Union Technology

Table 12 Volume and Surface Resistivity At Elevated Temperature Thick

Volume Resistivity Requirement 125°C	Average of three specimens	6.82 E+07 ≥1.00 E+06	Pass
Surface Resistivity	Average of three specimens	7.89 E+07	
Requirement 125°C		<u>></u> 1.00 E+05	Pass

Taiwan Union Technology

Moisture Absorption

Reference:

IPC-TM-650 Method 2.6.2.1 Water Absorption of Metal Clad Plastic Laminates IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 13 Moisture Absorption Thick

Moisture Absorption	Average of three specimens	0.19	
Requirement		<u><</u> 0.2	Pass

Dielectric Breakdown

Reference:

IPC-TM-650 Method 2.5.6 Dielectric Breakdown IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 14 Dielectric Breakdown

Dielectric Breakdown	Average of four specimens	44+	
Requirement		<u>></u> 40	Pass

台牌科技的分有下民公司 Taiwan Union Technology

Permittivity and Loss Tangent

Reference:

IPC-TM-650 Method 2.5.5.9 Permittivity and Loss Tangent, Parallel Plate 1 MHz to 1.5 MHz IPC-TM-650 Method 2.5.5.15 Permittivity and Loss Tangent by SPDR 1 GHz to 20 GHz IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Boards

Results:

Permittivity @ 1 MHz Requirement Thin	Average of three specimens	3.240 <u>≤</u> 4.3	Pass
Loss Tangent @ 1 MHz Requirement Thin	Average of three specimens	0.003 <u>≤</u> 0.006	Pass
Permittivity @ 1 MHz Requirement Thick	Average of three specimens	3.90 <u>≤</u> 4.3	Pass
Loss Tangent @ 1 MHz Requirement Thick	Average of three specimens	0.002 <u>≤</u> 0.006	Pass
Permittivity @ 1 GHz Requirement Thin	Average of three specimens	3.60 <u>≤</u> 4.3	Pass
Loss Tangent @ 1 GHz Requirement Thin	Average of three specimens	0.003 <u><</u> 0.006	Pass
Permittivity @ 1 GHz Requirement Thick	Average of three specimens	4.00 <u>≤</u> 4.3	Pass

Table 15 Permittivity and Loss Tangent

Taiwan Union Technology

Permittivity @ 10 GHz	Average of three specimens	3.65	Pass
Requirement Thin		< 4.2	
Loss Tangent @ 10 GHz	Average of three specimens	0.0036	
Requirement Thin		< 0.006	Pass
Permittivity @ 10 GHz	Average of three specimens	3.92	
Requirement Thick		<u>≺</u> 4.2	Pass
Loss Tangent @ 10 GHz	Average of three specimens	0.0040	Pass
Requirement Thick		<u><</u> 0.006	
Permittivity @ 20 GHz	Average of three specimens	3.64	
Requirement Thin		<u><</u> 4.2	Pass
Loss Tangent @ 20 GHz	Average of three specimens	0.0040	
Requirement Thin		<u><</u> 0.006	Pass
Permittivity @ 20 GHz	Average of three specimens	3.92	
Requirement Thick		<u><</u> 4.2	Pass
Loss Tangent @ 20 GHz	Average of three specimens	0.0044	
Requirement Thick		<u><</u> 0.006	Pass

Taiwan Union Technology

Flexural Strength

Reference:

IPC-TM-650 Method 2.4.4 Flexural Strength of Laminates at Ambient Temperature IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 16 Flexural Strength

Flexural Strength Length Direction	Average of two specimens	351	
Requirement		<u>></u> 345	Pass
Flexural Strength Cross Direction	Average of two specimens	350	
Requirement		<u>></u> 345	Pass

Arc Resistance

Reference:

IPC-TM-650 Method 2.5.1 Arc Resistance of Printed Wiring Material IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 17 Arc Resistance

Arc Resistance Thin	Average of three specimens	182	
Requirement		<u>></u> 60	Pass
Arc Resistance Thick	Average of three specimens	183	
Requirement		<u>></u> 60	Pass

Taiwan Union Technology Thermal Stress

Reference:

IPC-TM-650 Method 2.4.13.1 Thermal Stress of Laminates IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 18 Thermal Stress

Thermal Stress Thin Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Un-Etched B Side	No obvious blister, delamination or damage	Pass

Electric Strength

Reference:

IPC-TM-650 Method 2.5.6.2 Electric Strength IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 19 Electric Strength

Electric Strength Thin	Average of three specimens	71	
Requirement		<u>></u> 30	Pass

台牌科技的分有下民公司 Taiwan Union Technology

Flammability Vertical Burning

Reference:

UL94 Section 8 50W (20mm) Vertical Burning Test; V-0, V-1, V-2 IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 20 Vertical Burning Test Thin

The specimens were tested by the methods given above. The flammability Classification Condition A of specimens is V-0 The flammability Classification Condition A of specimens is V-0 The specimens pass.

Table 21 Vertical Burning Test Thick

The specimens were tested by the methods given above. The flammability Classification Condition A of specimens is V-0 The flammability Classification Condition B of specimens is V-0 The specimens pass.

Taiwan Union Technology Glass Transition Temperature

Reference:

IPC-TM-650 Method 2.4.25 Glass Transition Temperature and Cure Factor by DSC IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer PrintedBoards

Results:

Table 22 Glass Transition Temperature

Glass Transition Temperature Requirement No Requirement / DMA only Test by DMA Only

Decomposition Temperature

Reference:

IPC-TM-650 Method 2.4.24.6 Decomposition Temperature of Laminate Material Using TGA IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 23 Decomposition Temperature

Glass Transition Temperature 5% Weight Loss	410°C	
Requirement	<u>></u> 400	Pass

台耀科团设份有限公司

Taiwan Union Technology

Z-Axis CTE (TMA)

Reference:

IPC-TM-650 Method 2.4.24.6 Decomposition Temperature of Laminate Material Using TGA IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 24 Z-Axis CTE (TMA)

Z-Axis CTE Alpha 1 Average of two specimens Requirement	30 <u><</u> 50 Pass
Z-Axis CTE Alpha 2 Average of two specimens Requirement	192 ≤ 275 Pass
Z-Axis CTE 50-260 Average of two specimens	1.7
Requirement	<u><</u> 2.7 Pass

Taiwan Union Technology Time to Delamination

Reference:

IPC-TM-650 Method 2.4.24.1 Time to Delamination (TMA Method) IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 25 Time to Delamination (TMA)

Delamination T260	Average of tw	o specimens > 60		
	Requirement	<u>></u> 60	Pass	
Delamination	T288	Average of two specimens Requirement	> 60 <u>></u> 60	
Delamination	T300	Average of two specimens Requirement	> 3(<u>></u> 3(

Glass Transition Temperature (DMA)

Reference:

IPC-TM-650 Method 2.4.24.4 Glass Transition Temperature by DMA IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 26 Glass Transition Temperature (DMA)

Glass Transition Temperature	234°C	
Requirement	<u>></u> 170	Pass

台耀科翅设份有限公司

Taiwan Union Technology

Dimensional Stability

Reference:

IPC-TM-650 Method 2.4.39 Dimensional Stability, Glass Reinforced Thin Laminates

IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 27 Dimensional Stability Thin

Dimensional Stability Bake	Average of three specimens		
	Machine direction	-0.04	
	Cross direction	-0.05	
	Requirement	-0.3 to +0.3	Pass
Dimensional Stability Stress	Average of three specimens		
	Machine direction	-0.05	
	Cross direction	-0.02	
	Requirement	-0.3 to +0.3	Pass

Table 28 Dimensional Stability Thick

Dimensional Stability Bake	Average of three specimens		
	Machine direction	-0.06	
	Cross direction	-0.03	
	Requirement	-0.3 to +0.3	Pass
Dimensional Stability Stress	Average of three specimens		
	Machine direction	-0.04	
	Cross direction	-0.03	
	Requirement	-0.3 to +0.3	Pass

Taiwan Union Technology

Solderability (Edge Dip Test)

Reference:

IPC-J-STD-003C; Method 4.2.1 Edge Dip Test IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 29 Solderability

Solderability Thin	Sample surface exhibited good wetting	Pass
Solderability Thick	Sample surface exhibited good wetting	Pass

Chemical Resistance

Reference:

IPC-TM-650 Method 2.3.4.2 Chemical Resistance of Laminates, Prepreg and Coated Foil Products by Solvent Exposure. IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 30 Chemical Resistance

Chemical Resistance Thin	Three specimens		
Requirement	Appearance after bake	No change	Pass Requirement
	Appearance after solvent	No change	Pass
Chemical Resistance Thick	Three specimens		
Requirement	Appearance after bake	No change	Pass Requirement

台牌科技的分有形已公司 Taiwan Union Technology

Pressure Cooker Test

Reference:

IPC-TM-650 Method 2.6.16 Pressure Vessel Method for Glass Epoxy Laminate Integrity IPC-4101E WAM1/134 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 32Pressure Cooker Test

Pressure Cooker Test	Five specimens	
Requirement	The samples shall have no measles,	
	blisters or surface erosion	Pass

Taiwan Union Technology

CERTIFICATE OF CONFORMANCE

The TAWIAN UNION TECHNOLOGY CORPORATION (TUC) certifies that the test equipment used complies with the requirements of correlation criterion and that data contained in this report is accurate within the tolerance limitation of the equipment.

The report is invalid without the signature of the reviewer and the approver.

Reviewed by:

Approved by:

Weiting

Weiting Shen QA Engineer 16 August 2022

and

Money Wang QA Manager 16 August 2022

Douglas J. Sober

For IPC 16 August 2022