

Taiwan Union Technology

TEST REPORT

CLIENT: IPC Validation Services

3000 Lakeside Drive

Suite 105N

Bannockburn, IL 60015 USA Attention: Mr. Randy Cherry

+1-847-597-5606

TEST ITEMS: Peel Strength, Volume Resistivity, Surface Resistivity, Moisture Absorption,

Dielectric Breakdown, Permittivity @ 1 MHz, Loss Tangent @ 1 MHZ, Flexural Strength, Arc Resistance, Thermal Stress, Electric Strength, Flammability, Glass Transition Temperature, Decomposition Temperature, CTE (TMA), Time to

Delamination (T260, T288, T300), Dimensional Stability, Solderability, Chemical

Resistance, Metal Surfaces Cleanability, Pressure Cooker Test.

SAMPLE: Copper-Clad Laminate

TEST MATERIAL: TU-865

SPECIFICATION: IPC-4101E WAM1/130

TEST RESULTS: The specimens were tested by the indicated test methods within this report.

The actual detailed test results are enclosed.

DATE OF REPORT: 16 August 2022

台燿科技股份有限公司

Taiwan Union Technology

SUMMARIZED TEST RESULTS:

Test Item	Thin	Thick
Peel Strength	Pass	Pass
Volume Resistivity	Pass	Pass
Surface Resistivity	Pass	Pass
Moisture Absorption		Pass
Dielectric Breakdown		Pass
Permittivity @ 1MHz	Pass	Pass
Loss Tangent @ 1MHz	Pass	Pass
Flexural Strength		Pass
Arc Resistance	Pass	Pass
Surface Resistivity	Pass	Pass
Thermal Stress	Pass	Pass
Electric Strength	Pass	Pass
Flammability	Pass	Pass
Glass Transition Temperature		Pass
Decomposition Temperature		Pass
Z-Axis CTE		Pass
Time to Delamination		Pass
Dimensional Stability	Pass	Pass
Solderability		Pass
Chemical Resistance	Report Only	Report Only
Metal Surface Cleanability		Report Only
Pressure Cooker Test		Report Only

Taiwan Union Technology

Peel Strength

Reference:

IPC-TM-650 Method 2.4.8 Peel Strength of Metal Clad Laminates
IPC-TM-650 Method 3.4.8.3 Peel Strength of Metal Clad Laminates at Elevated Temperature
IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed
Board

Results:

Table 1 Peel Strength After Thermal Strength Thin

Side A Cross-Wise and Length-Wise Average	0.85	
Side B Cross-Wise and Length-Wise Average	0.89	
Requirement	> 0.80	Pass

Table 2 Peel Strength After Thermal Strength Thick

Side A Cross-Wise and Length-Wise Average	1.06	
Side B Cross-Wise and Length-Wise Average	1.05	
Requirement	> 1.05	Pass

Table 3 Peel Strength At Elevated Temperature Thin

Side A Cross-Wise and Length-Wise Average	0.85	
Side B Cross-Wise and Length-Wise Average	0.82	
Requirement	> 0.70	Pass

Table 4 Peel Strength At Elevated Temperature Thick

Side A Cross-Wise and Length-Wise Average	0.87	
Side B Cross-Wise and Length-Wise Average	0.89	
Requirement	> 0.70	Pass

Taiwan Union Technology

Table 5 Peel Strength After Process Solutions Thin

Side A Cross-Wise and Length-Wise Average	0.62	
Side B Cross-Wise and Length-Wise Average	0.61	
Requirement	> 0.55	Pass

Table 6 Peel Strength After Process Solutions Thick

Side A Cross-Wise and Length-Wise Average	0.83	
Side B Cross-Wise and Length-Wise Average	0.88	
Requirement	\geq 0.80	Pass

Table 7 Peel Strength As Received Low Profile Copper Thin

Side A Cross-Wise and Length-Wise Average	0.86	
Side B Cross-Wise and Length-Wise Average	0.84	
Requirement	> 0.70	Pass

Table 8 Peel Strength As Received Low Profile Copper Thick

Side A Cross-Wise and Length-Wise Average	0.77	
Side B Cross-Wise and Length-Wise Average	0.76	
Requirement	\geq 0.70	Pass

Volume & Surface Resistivity

Reference:

IPC-TM-650 Method 2.5.17.1 Volume and Surface Resistivity of Dielectric Materials IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

台燿科技设份有限公司

Taiwan Union Technology

Results:

Table 9 Volume and Surface Resistivity Humidity Conditioning Thin

Volume Resistivity	Average of three specimens	3.32 E+07	
Requirement C-96/35/90		$\geq 1.00 \text{ E} + 06$	Pass
Surface Resistivity	Average of three specimens	5.41 E+06	
Requirement C-96/35/90		\geq 1.00 E+04	Pass

Table 10 Volume and Surface Resistivity At Elevated Temperature Thin

Volume Resistivity	Average of three specimens	3.32 E+08	
Requirement 125°C		\geq 1.00 E+03	Pass
Surface Resistivity	Average of three specimens	6.21 E+05	
Requirement 125°C		\geq 1.00 E+03	Pass

Table 11 Volume and Surface Resistivity Humidity Conditioning Thick

Volume Resistivity	Average of three specimens	5.43 E+08	
Requirement after moisture		1.00 E+04	Pass
Surface Resistivity	Average of three specimens	1.39 E+07	
Requirement after moisture		≥1.00 E+04	Pass

Table 12 Volume and Surface Resistivity At Elevated Temperature Thick

Volume Resistivity	Average of three specimens	5.87 E+08	
Requirement 125°C		> 1.00 E + 03	Pass

Taiwan Union Technology

Surface Resistivity Average of three specimens 4.63 E+07

Requirement 125° C $\geq 1.00 \text{ E}+03$ Pass

Moisture Absorption

Reference:

IPC-TM-650 Method 2.6.2.1 Water Absorption of Metal Clad Plastic Laminates IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 13 Moisture Absorption Thick

Moisture Absorption	Average of three specimens	0.21	
Requirement		< 0.5	Pass

Dielectric Breakdown

Reference:

IPC-TM-650 Method 2.5.6 Dielectric Breakdown
IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 14 Dielectric Breakdown

Dielectric Breakdown	Average of four specimens	44+	
Requirement		≥ 40	Pass

台、握科技股份有限公司

Taiwan Union Technology

Permittivity and Loss Tangent @ 1 MHz

台、播料技的分有限公司

Taiwan Union Technology

IPC-TM-650 Method 2.5.5.9 Permittivity and Loss Tangent, Parallel Plate 1 MHz to 1.5 MHz IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 15 Permittivity and Loss Tangent

Permittivity @ 1 MHz	Average of three specimens	4.15	
Requirement Thin		<u>≤</u> 5.4	Pass
Loss Tangent @ 1 MHz	Average of three specimens	0.002	
Requirement Thin		\leq 0.001	Pass
Permittivity @ 1 MHz	Average of three specimens	5.23	
Requirement Thick		≤ 5.4	Pass
Loss Tangent @ 1 MHz	Average of three specimens	0.002	
Requirement Thick		≤ 0.035	Pass

Flexural Strength

Taiwan Union Technology

Reference:

IPC-TM-650 Method 2.4.4 Flexural Strength of Laminates at Ambient Temperature IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 16 Flexural Strength

Flexural Strength Length Direction	Average of two specimens	435	
Requirement		≥ 415	Pass
Flexural Strength Cross Direction	Average of two specimens	362	
Requirement		≥ 345	Pass

Arc Resistance

Reference:

IPC-TM-650 Method 2.5.1 Arc Resistance of Printed Wiring MaterialIPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 17 Arc Resistance

Arc Resistance Thin	Average of three specimens	141	
Requirement		≥ 60	Pass
Arc Resistance Thick	Average of three specimens	187	
Requirement		≥ 60	Pass

Taiwan Union Technology Thermal Stress

Reference:

IPC-TM-650 Method 2.4.13.1 Thermal Stress of Laminates IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 18 Thermal Stress

Thermal Stress Thin Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Un-Etched B Side	No obvious blister, delamination or damage	Pass

Electric Strength

Reference:

IPC-TM-650 Method 2.5.6.2 Electric Strength
IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 19 Electric Strength

Electric Strength Thin	Average of three specimens	88	
Requirement		≥ 30	Pass

Taiwan Union Technology

Flammability Vertical Burning

Reference:

UL94 Section 8 50W (20mm) Vertical Burning Test; V-0, V-1, V-2 IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 20 Vertical Burning Test Thin

The specimens were tested by the methods given above.

The flammability Classification Condition A of specimens is V-0

The flammability Classification Condition A of specimens is V-0

The specimens pass.

Table 21 Vertical Burning Test Thick

The specimens were tested by the methods given above.

The flammability Classification Condition A of specimens is V-0

The flammability Classification Condition B of specimens is V-0

The specimens pass.

Glass Transition Temperature

Reference:

IPC-TM-650 Method 2.4.25 Glass Transition Temperature and Cure Factor by DSC IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Boards

Results:

Table 22 Glass Transition Temperature

台、耀科技的分有限公司

Taiwan Union TechnologyGlass Transition Temperature 181°C

Taiwan Union Technology

Requirement

 ≥ 170

Pass

Decomposition Temperature

Reference:

IPC-TM-650 Method 2.4.24.6 Decomposition Temperature of Laminate Material Using TGA IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 23 Decomposition Temperature

Glass Transition Temperature 5% Weight Loss

Requirement ≥ 340

Z-Axis CTE (TMA)

Reference:

IPC-TM-650 Method 2.4.24.6 Decomposition Temperature of Laminate Material Using TGA IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 24 Z-Axis CTE (TMA)

Z-Axis CTE Alpha 1 Average of two specimens 47

< 60 Pass

355°C

Pass

Taiwan Union Technology

Z-Axis CTE Alpha 2	Average of two specimens	263 ≤300	Pass
Z-Axis CTE 50-260	Average of two specimens	2.0 ≤ 3.0	Pass

Time to Delamination

Reference:

IPC-TM-650 Method 2.4.24.1 Time to Delamination (TMA Method)IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 25 Time to Delamination (TMA)

Delamination T260	Average of two specimens	> 60	
	Requirement	≥ 30	Pass
Delamination T288	Average of two specimens	> 45	
	Requirement	≥ 15	Pass
Delamination T300	Average of two specimens	> 4	
	Requirement	≥ 2	Pass

Dimensional Stability

Reference:

IPC-TM-650 Method 2.4.39 Dimensional Stability, Glass Reinforced Thin Laminates

Taiwan Union Technology

IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 26 Dimensional Stability Thin

Dimensional Stability Bake	Average of three specimens
----------------------------	----------------------------

Machine direction -0.02 Cross direction -0.05

Requirement -0.3 to +0.3 Pass

Dimensional Stability Stress Average of three specimens

Machine direction -0.03 Cross direction -0.04

Requirement -0.3 to +0.3 Pass

Table 27 Dimensional Stability Thick

Dimensional Stability Bake Average of three specimens

Machine direction -0.03 Cross direction -0.06

Requirement -0.3 to +0.3 Pass

Dimensional Stability Stress Average of three specimens

Machine direction -0.05 Cross direction -0.01

Requirement -0.3 to +0.3 Pass

Solderability (Edge Dip Test)

Reference:

IPC-J-STD-003C; Method 4.2.1 Edge Dip Test

IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Taiwan Union Technology

Results:

Table 28 Solderability (TMA)

Solderability Thin Sample surface exhibited good wetting Pass Solderability Thick Sample surface exhibited good wetting **Pass**

Chemical Resistance

Reference:

IPC-TM-650 Method 2.3.4.2 Chemical Resistance of Laminates, Prepreg and Coated Foil Products by Solvent Exposure.

IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 29 Chemical Resistance

Three specimens Requirement Appearance after bake No change **Pass** Requirement Appearance after solvent No change Pass

Chemical Resistance Thick Three specimens

Chemical Resistance Thin

Requirement Appearance after bake No change Pass Requirement Appearance after solvent No change Pass

Metal Surface Cleanability

Reference:

台、耀科技的分有限公司

Taiwan Union Technology
IPC-TM-650 Method 2.3.1.1 Chemical Cleaning of Metal-Clad Laminate

Taiwan Union Technology

IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 30 Metal Surface Cleanability

Metal Surface Cleanability Three specimens

Requirement The metal cladding on the test specimen shall

be cleaned to a uniform matte finish.

Deionized or distilled water poured on the

surface does not bead or form puddles. Pass

Pressure Cooker Test

Reference:

IPC-TM-650 Method 2.6.16 Pressure Vessel Method for Glass Epoxy Laminate Integrity IPC-4101E WAM1/130 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 31 Pressure Cooker Test

Pressure Cooker Test Five specimens

Requirement The samples shall have no measles,

blisters or surface erosion Pass

Taiwan Union Technology

CERTIFICATE OF CONFORMANCE

The TAWIAN UNION TECHNOLOGY CORPORATION (TUC) certifies that the test equipment used complies with the requirements of correlation criterion and that data contained in this report is accurate within the tolerance limitation of the equipment.

The report is invalid without the signature of the reviewer and the approver.

Reviewed by: Approved by:

Weiting Shen

QA Engineer

16 August 2022

Money Wang

QA Manager

16 August 2022

For IPC

16 August 2022

Douglas J. John