

TEST REPORT

(Self-Tested Data)

CLIENT: IPC Validation Services

3000 Lakeside Drive

Suite 105N

Bannockburn, IL 60015 USA Attention: Mr. Randy Cherry

+1-847-597-5606

TEST ITEMS: Peel Strength, Volume Resistivity, Surface Resistivity, Moisture Absorption,

Dielectric Breakdown, Permittivity @ 1 MHz, Loss Tangent @ 1 MHZ, Flexural Strength, Arc Resistance, Thermal Stress, Electric Strength, Flammability, Glass Transition Temperature, Decomposition Temperature, CTE (TMA), Time to Delamination (T260, T288, T300), Dimensional Stability, Solderability, Metal

Surfaces Cleanability, Pressure Cooker Test.

SAMPLE: Copper-Clad Laminate

TEST MATERIAL: Arlon Product 85HP

SPECIFICATION: IPC-4101/40

TEST RESULTS: The specimens were tested by the indicated test methods within this report.

The actual detailed test results are enclosed.

DATE OF REPORT: 20 May 2021

SUMMARIZED TEST RESULTS:

Test Item	Thin	Thick	
Peel Strength	Pass	Pass	
Volume Resistivity	Pass	Pass	
Surface Resistivity	Pass	Pass	
Moisture Absorption		Pass	
Dielectric Breakdown		Pass	
Permittivity @ 1MHz	Pass	Pass	
Loss Tangent @ 1MHz	Pass	Pass	
Flexural Strength		Pass	
Arc Resistance	Pass	Pass	
Surface Resistivity	Pass	Pass	
Thermal Stress	Pass	Pass	
Electric Strength	Pass	Pass	
Flammability	Pass	Pass	
Glass Transition Temperature		Pass	
Decomposition Temperature		<u>N/A for SS41</u>	
Z-Axis CTE		<u>N/A for SS41</u>	
Time to Delamination		<u>N/A for SS41</u>	
Dimensional Stability	Pass	Pass	
Solderability		Pass	
Chemical Resistance	Report Only	Report Only	
Metal Surface Cleanability		Report Only	
Pressure Cooker Test		Report Only	

Peel Strength

Reference:

IPC-TM-650 Method 2.4.8 Peel Strength of Metal Clad Laminates
IPC-TM-650 Method 3.4.8.3 Peel Strength of Metal Clad Laminates at Elevated Temperature
IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 1 Peel Strength After Thermal Stress Thin

Side A Cross-Wise and Length-Wise Average	0.92	
Side B Cross-Wise and Length-Wise Average	0.91	
Requirement	> 0.70	Pass

Table 2 Peel Strength After Thermal Stress Thick

Side A Cross-Wise and Length-Wise Average	1.16	
Side B Cross-Wise and Length-Wise Average	1.18	
Requirement	≥ 0.80	Pass

Table 3 Peel Strength At Elevated Temperature Thin

Side A Cross-Wise and Length-Wise Average	0.93	
Side B Cross-Wise and Length-Wise Average	0.89	
Requirement	> 0.60	Pass

Table 4 Peel Strength At Elevated Temperature Thick

Side A Cross-Wise and Length-Wise Average	0.90	
Side B Cross-Wise and Length-Wise Average	0.89	
Requirement	≥ 0.70	Pass

Table 5 Peel Strength After Process Solutions Thin

Side A Cross-Wise and Length-Wise Average	0.98	
Side B Cross-Wise and Length-Wise Average	1.09	
Requirement	> 0.60	Pass

Table 6 Peel Strength After Process Solutions Thick

Side A Cross-Wise and Length-Wise Average	0.97	
Side B Cross-Wise and Length-Wise Average	0.98	
Requirement	> 0.70	Pass

Table 7 Peel Strength As Received Low Profile Copper Thin

Side A Cross-Wise and Length-Wise Average N/A
Side B Cross-Wise and Length-Wise Average N/A

Requirement N/A for SS41

Table 8 Peel Strength As Received Low Profile Copper Thick

Side A Cross-Wise and Length-Wise AverageN/ASide B Cross-Wise and Length-Wise AverageN/A

Requirement N/A for SS41

Volume & Surface Resistivity

Reference:

IPC-TM-650 Method 2.5.17.1 Volume and Surface Resistivity of Dielectric Materials IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 9 Volume and Surface Resistivity Humidity Conditioning Thin

Volume Resistivity	Average of three specimens	8.3E+04	
Requirement C-96/35/	90	≥6.00 E+04	Pass
_			
Surface Resistivity	Average of three specimens	7.8E+04	
Requirement C-96/35/	90	> 1 00 E+04	Pass

Table 10 Volume and Surface Resistivity At Elevated Temperature Thin

Volume Resistivity	Average of three specimens	3.5E+08	
Requirement 125°C		≥6.00 E+04	Pass
Surface Resistivity	Average of three specimens	2.2E+07	
Requirement 125°C		> 1.00 E+04	Pass

Table 11 Volume and Surface Resistivity Humidity Conditioning Thick

Volume Resistivity	Average of three specimens	3.3E+07	
Requirement after moist	ture	≥1.00 E+06	Pass

Surface Resistivity	Average of three specimens	3.4E+07	
Requirement after mois	ture	≥1.00 E+06	Pass

Table 12 Volume and Surface Resistivity At Elevated Temperature Thick

Volume Resistivity	Average of three specimens	1.21E+09	
Requirement 125°C		≥1.00 E+06	Pass
Surface Resistivity	Average of three specimens	3.19E+06	
Requirement 125°C		\geq 1.00 E+06	Pass

Moisture Absorption

Reference:

IPC-TM-650 Method 2.6.2.1 Water Absorption of Metal Clad Plastic Laminates IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 13 Moisture Absorption Thick

Moisture Absorption	< 1.55 mm Average of three specimens	0.98	
Requirement		<u>≤</u> 1.0	Pass

Dielectric Breakdown

Reference:

IPC-TM-650 Method 2.5.6 Dielectric Breakdown
IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 14 Dielectric Breakdown

Minimum Voltage	Average of four specimens	45+N.B.	
Requirement		≥ 40	Pass

Permittivity and Loss Tangent

Reference:

IPC-TM-650 Method 2.5.5.9 Permittivity and Loss Tangent, Parallel Plate 1 MHz to 1.5 MHz IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 15 Permittivity and Loss Tangent

Permittivity @ 1 MHz Thin	Average of three specimens	3.8	
Requirement		<u>≤</u> 5.4	Pass
Loss Tangent @ 1 MHz Thin	Average of three specimens	0.015	
Requirement		≤ 0.035	Pass
Permittivity @ 1 MHz Thick	Average of three specimens	3.8	
Requirement		≤ 5.4	Pass
-			
Loss Tangent @ 1 MHz Thick	Average of three specimens	0.013	
Requirement		≤ 0.035	Pass

Flexural Strength

Reference:

IPC-TM-650 Method 2.4.4 Flexural Strength of Laminates at Ambient Temperature IPC-TM-650 Method 2.4.4.1 Flexural Strength of Laminates at Elevated Temperature IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 16 Flexural Strength

Flexural Strength			
Length Direction	Average of two specimens	61,643	
Requirement		\geq 60,190	Pass
Flexural Strength			
Cross Direction	Average of two specimens	48,279	

Requirement		≥ 47,140	Pass
Flexural Strength a	at Elevated Temperature		
Length Direction	Average of two specimens	46,439	
Requirement		≥ 45,110	Pass

Arc Resistance

Reference:

IPC-TM-650 Method 2.5.1 Arc Resistance of Printed Wiring Material IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 17 Arc Resistance

Arc Resistance Thin	Average of three specimens	180	
Requirement		≥ 120	Pass
Arc Resistance Thick	Average of three specimens	181	
Requirement		≥ 120	Pass

Thermal Stress

Reference:

IPC-TM-650 Method 2.4.13.1 Thermal Stress of Laminates
IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 18 Thermal Stress

Thermal Stress Thin Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched B Side	No obvious blister, delamination or damage	Pass

Thermal Stress Thin Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched B Side	No obvious blister, delamination or damage	Pass
	,	
Thermal Stress Thick Un-Etched A Side	No obvious blister, delamination or damage	Pass
	,	
Thermal Stress Thick Un-Etched B Side	No obvious blister, delamination or damage	Pass

Electric Strength

Reference:

IPC-TM-650 Method 2.5.6.2 Electric Strength IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 19 Electric Strength

Electric Strength Thin	Average of three specimens	73	
Requirement		> 30	Pass

Flammability Vertical Burning

Reference:

UL94 Section 8 50W (20mm) Vertical Burning Test; V-0, V-1, V-2 IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 19 Vertical Burning Test Thin

The specimens were tested by the methods given above.

The flammability Classification Condition A of specimens is HB

The flammability Classification Condition A of specimens is HB

The specimens pass.

Table 20 Vertical Burning Test Thick

The specimens were tested by the methods given above.

The flammability Classification Condition A of specimens is HB

The flammability Classification Condition A of specimens is HB The specimens pass.

Glass Transition Temperature

Reference:

IPC-TM-650 Method 2.4.25 Glass Transition Temperature and Cure Factor by DSC IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 22 Glass Transition Temperature

Glass Transition Temperature 255°C

Requirement $\geq 250^{\circ}$ C Pass

Decomposition Temperature

Reference:

IPC-TM-650 Method 2.4.24.6 Decomposition Temperature of Laminate Material Using TGA IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 23 Decomposition Temperature

Glass Transition Temperature 5% Weight Loss N/A

Requirement N/A for SS41

Z-Axis CTE (TMA)

Reference:

IPC-TM-650 Method 2.4.24. Glass Transition Temperature and Z-Axis Expansion by TMA IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 24 Z-Axis CTE (TMA)

X-Axis CTE	Average of two specimens	14

N/A for SS41

Y-Axis CTE Average of two specimens 14

N/A for SS41

Z-Axis CTE Average of two specimens 40

N/A for SS41

Average of two specimens 1.5 Z-Axis Expansion 50-260

N/A for SS41

Time to Delamination

Reference:

IPC-TM-650 Method 2.4.24.1 Time to Delamination (TMA Method) IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 25 Time to Delamination (TMA)

Delamination T260	Average of two specimens Requirement	60+ <u>N/A for SS41</u>
Delamination T288	Average of two specimens Requirement	60+ N/A for SS41
Delamination T300	Average of two specimens Requirement	60+ <u>N/A for SS41</u>

Dimensional Stability

Reference:

IPC-TM-650 Method 2.4.39 Dimensional Stability, Glass Reinforced Thin Laminates IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 26 Dimensional Stability Thin

Dimensional Stability Bake Thin Average of three specimens

Machine direction -181~163 Requirement -300~300

Dimensional Stability Stress Thin Average of three specimens

Cross direction -190~133
Requirement -300~300

Table 27 Dimensional Stability Thick

> Machine direction -234~163 Requirement -300~300

Dimensional Stability Stress Thick Average of three specimens

Cross direction -222~179
Requirement -300~300

Solderability (Edge Dip Test)

Reference:

IPC-J-STD-003C; Method 4.2.1 Edge Dip Test

IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 28 Solderability

Solderability Thin Sample surface exhibited good wetting Pass Solderability Thick Sample surface exhibited good wetting Pass

Chemical Resistance

Reference:

IPC-TM-650 Method 2.3.4.2 Chemical Resistance of Laminates, Prepreg and Coated Foil Products by Solvent Exposure.

Results:

Table 29 Chemical Resistance

Chemical Resistance Thin Average of three specimens

Weight increase (Check & Record)

Requirement Appearance after bake No Requirement for SS41
Requirement Appearance after solvent No Requirement for SS41

Chemical Resistance Thick Average of three specimens

Weight increase (Check & Record)

Requirement Appearance after bake No Requirement for SS41
Requirement Appearance after solvent No Requirement for SS41

Metal Surface Cleanability

Reference:

IPC-TM-650 Method 2.3.1.1 Chemical Cleaning of Metal-Clad Laminate IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 29 Metal Surface Cleanability

Metal Surface Cleanability Three specimens

Requirement The metal cladding on the test specimen shall

be cleaned to a uniform matte finish.

Deionized or distilled water poured on the

surface does not bead or form puddles. Pass

Pressure Cooker Test

Reference:

IPC-TM-650 Method 2.6.16 Pressure Vessel Method for Glass Epoxy Laminate Integrity IPC-4101E/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 30 Pressure Cooker Test

Pressure Cooker Test

Five specimens

Requirement

The samples shall have no measles,

blisters or surface erosion

Pass

CERTIFICATE OF CONFORMANCE

Arlon Electronic Materials Division certifies that the test equipment used complies with the requirements of correlation criterion and that data contained in this report is accurate within the tolerance limitation of the equipment.

The report is invalid without the signature of the reviewer and the approver.

Reviewed by:

Approved by:

John Wright

Quality Manager

For IPC

Douglas J. John