

Ventec Electronics (SUZHOU) Co., Ltd.

TEST REPORT

(Self-Tested Data)

CLIENT: IPC Validation Services

3000 Lakeside Drive

Suite 105N

Bannockburn, IL 60015 USA

Attention: Mr. Randy Cherry

+1-847-597-5606

TEST ITEMS: Peel Strength, Volume Resistivity, Surface Resistivity, Moisture Absorption,

Dielectric Breakdown, Permittivity @ 1 GHz, Loss Tangent @ 1 GHZ, Flexural Strength, Arc Resistance, Thermal Stress, Electric Strength, Flammability, Glass Transition Temperature, Decomposition Temperature, CTE (TMA), Time to

Delamination (T260, T288, T300), Dimensional Stability, Solderability, Chemical

Resistance, Metal Surfaces Cleanability, Pressure Cooker Test.

SAMPLE: Copper-Clad Laminate

TEST MATERIAL: VT-901

SPECIFICATION: IPC-4101/41

TEST RESULTS: The specimens were tested by the indicated test methods within this report.

The actual detailed test results are enclosed.

DATE OF REPORT: November 17, 2022

Ventec Electronics (SUZHOU) Co., Ltd.

SUMMARIZED TEST RESULTS:

Test Item	Thin	Thick
Peel Strength	Pass	Pass
Volume Resistivity	Pass	Pass
Surface Resistivity	Pass	Pass
Moisture Absorption		Pass
Dielectric Breakdown		Pass
Permittivity @ 1MHz	Pass	Pass
Loss Tangent @ 1MHz	Pass	Pass
Flexural Strength		Pass
Arc Resistance	Pass	Pass
Thermal Stress	Pass	Pass
Electric Strength	Pass	Pass
Flammability	Pass	Pass
Glass Transition Temperature		Pass
Decomposition Temperature		Report Only
Z-Axis CTE		Report Only
Time to Delamination		Report Only
Dimensional Stability	Pass	Pass
Solderability		Pass
Chemical Resistance	Report Only	Report Only
Metal Surface Cleanability		Report Only
Pressure Cooker Test		Report Only

Ventec Electronics (SUZHOU) Co., Ltd.

Peel Strength

Reference:

IPC-TM-650 Method 2.4.8 Peel Strength of Metal Clad Laminates
IPC-TM-650 Method 3.4.8.3 Peel Strength of Metal Clad Laminates at Elevated Temperature
IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 1 Peel Strength After Thermal Strength Thin

Side A Cross-Wise and Length-Wise Average	1.09 N/mm	
Side B Cross-Wise and Length-Wise Average	1.08 N/mm	
Requirement	≥ 0.70 N/mm	Pass

Table 2 Peel Strength After Thermal Strength Thick

Side A Cross-Wise and Length-Wise Average	1.13 N/mm	
Side B Cross-Wise and Length-Wise Average	1.11 N/mm	
Requirement	≥ 0.80 N/mm	Pass

Table 3 Peel Strength At Elevated Temperature Thin

Side A Cross-Wise and Length-Wise Average	1.12 N/mm	
Side B Cross-Wise and Length-Wise Average	0.99N/mm	
Requirement	≥ 0.60 N/mm	Pass

Table 4 Peel Strength At Elevated Temperature Thick

Side A Cross-Wise and Length-Wise Average	1.26N/mm	
Side B Cross-Wise and Length-Wise Average	1.25 N/mm	
Requirement	> 0.70 N/mm	Pass

Ventec Electronics (SUZHOU) Co., Ltd.

Table 5 Peel Strength After Process Solutions Thin

Side A Cross-Wise and Length-Wise Average	1.28 N/mm	
Side B Cross-Wise and Length-Wise Average	1.35 N/mm	
Requirement	\geq 0.60 N/mm	Pass

Table 6 Peel Strength After Process Solutions Thick

Side A Cross-Wise and Length-Wise Average	1.51 N/mm	
Side B Cross-Wise and Length-Wise Average	1.47 N/mm	
Requirement	≥ 0.70 N/mm	Pass

Table 7 Peel Strength As Received Low Profile Copper Thin

Side A Cross-Wise and Length-Wise Average	N/A
Side B Cross-Wise and Length-Wise Average	N/A
Requirement	N/A

Table 8 Peel Strength As Received Low Profile Copper Thick

Side A Cross-Wise and Length-Wise Average	N/A
Side B Cross-Wise and Length-Wise Average	N/A
Requirement	N/A

Volume & Surface Resistivity

Reference:

IPC-TM-650 Method 2.5.17.1 Volume and Surface Resistivity of Dielectric Materials IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 9 Volume and Surface Resistivity Humidity Conditioning Thin

Volume Resistivity	Average of three specimens	3.15 E+06	
Requirement		≥6.00 E+04	Pass
Surface Resistivity	Average of three specimens	1.72 E+06	
Requirement		≥1.00 E+04	Pass

Ventec Electronics (SUZHOU) Co., Ltd.

Table 10 Volume and Surface Resistivity At Elevated Temperature Thin

Volume Resistivity	Average of three specimens	4.20 E+06	
Requirement		≥6.00 E+04	Pass
Surface Resistivity	Average of three specimens	2.31 E+06	
Requirement		≥1.00 E+04	Pass

Table 11 Volume and Surface Resistivity Humidity Conditioning Thick

Volume Resistivity	Average of three specimens	6.25 E+07	
Requirement		≥1.00 E+06	Pass
Surface Resistivity	Average of three specimens	3.11 E+07	
Requirement		≥1.00 E+06	Pass

Table 12 Volume and Surface Resistivity At Elevated Temperature Thick

Volume Resistivity	Average of three specimens	7.61 E+07	
Requirement		≥1.00 E+06	Pass
Surface Resistivity	Average of three specimens	2.01 E+07	
Requirement		≥1.00 E+06	Pass

Moisture Absorption

Reference:

IPC-TM-650 Method 2.6.2.1 Water Absorption of Metal Clad Plastic Laminates IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 13 Moisture Absorption Thick

Moisture Absorption	<1.55 mm	Average of three specimens	0.44 %	
Requirement			≤ 1.0%	Pass

Ventec Electronics (SUZHOU) Co., Ltd.

Moisture Absorption ≥ 1.55 mm Average of three specimens 0.23 %

Requirement $\leq 0.5\%$ Pass

Dielectric Breakdown

Reference:

IPC-TM-650 Method 2.5.6 Dielectric Breakdown IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 14 Dielectric Breakdown

Dielectric Breakdown	Average of four specimens	43 kV	
Requirement		≥ 40 kV	Pass

Permittivity and Loss Tangent

Reference:

IPC-TM-650 Method 2.5.5.9 Permittivity and Loss Tangent, Parallel Plate 1 MHz to 1.5 MHz IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board **Results:**

Table 15 Permittivity and Loss Tangent

Permittivity @ 1 GHz Thin	Average of three specimens	4.16	
Requirement		≤ 5.4	Pass
Loss Tangent @ 1 GHz Thin	Average of three specimens	0.010	
Requirement		≤ 0.035	Pass
Permittivity @ 1 GHz Thick	Average of three specimens	4.50	
Requirement		<u>≤</u> 5.4	Pass

Ventec Electronics (SUZHOU) Co., Ltd.

Loss Tangent @ 1 GHz Thick Average of three specimens	0.010	
Requirement	≤ 0.035	Pass

Flexural Strength

Reference:

IPC-TM-650 Method 2.4.4 Flexural Strength of Laminates at Ambient Temperature IPC-TM-650 Method 2.4.4.1 Flexural Strength of Laminates at Elevated Temperature IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 16 Flexural Strength

Flexural Strength Length Direction Requirement	Average of two specimens	80120 ≥ 60190	lb/in ² lb/in ²	Pass
Flexural Strength Cross Direction Requirement	Average of two specimens	61458 ≥ 47140	lb/in ² lb/in ²	Pass
C	at Elevated Temperature Average of two specimens	60682 ≥ 45110	lb/in ² lb/in ²	Pass

Arc Resistance

Reference:

IPC-TM-650 Method 2.5.1 Arc Resistance of Printed Wiring Material IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Ventec Electronics (SUZHOU) Co., Ltd.

Table 17 Arc Resistance

Arc Resistance Thin	Average of three specimens	133 S	
Requirement		≥ 120 S	Pass
Arc Resistance Thick	Average of three specimens	147 S	
Requirement		≥ 120 S	Pass

Thermal Stress

Reference:

IPC-TM-650 Method 2.4.13.1 Thermal Stress of Laminates IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 18 Thermal Stress

Thermal Stress Thin Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thin Un-Etched B Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Un-Etched A Side	No obvious blister, delamination or damage	Pass
Thermal Stress Thick Un-Etched B Side	No obvious blister, delamination or damage	Pass

Electric Strength

Reference:

IPC-TM-650 Method 2.5.6.2 Electric Strength
IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Ventec Electronics (SUZHOU) Co., Ltd.

Results:

Table 19 Electric Strength

Electric Strength Thin Requirement

Average of three specimens

60 kV/mm

 $> 30 \, kV/mm$ Pass

Flammability Vertical Burning

Reference:

UL94 Section 8 50W (20mm) Vertical Burning Test; V-0, V-1, V-2 IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 19 Vertical Burning Test Thin

The specimens were tested by the methods given above.

The flammability Classification Condition A of specimens is V0

The flammability Classification Condition A of specimens is V0

The specimens pass.

Table 20 Vertical Burning Test Thick

The specimens were tested by the methods given above.

The flammability Classification Condition A of specimens is V0

The flammability Classification Condition A of specimens is V0

The specimens pass.

Glass Transition Temperature

Reference:

IPC-TM-650 Method 2.4.25 Glass Transition Temperature and Cure Factor by DSC IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Ventec Electronics (SUZHOU) Co., Ltd.

Results:

Table 22 Glass Transition Temperature

Glass Transition Temperature 256. 59°C

Requirement $\geq 250^{\circ}$ C Pass

Decomposition Temperature

Reference:

IPC-TM-650 Method 2.4.24.6 Decomposition Temperature of Laminate Material Using TGA IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 23 Decomposition Temperature

Glass Transition Temperature 5% Weight Loss 396 °C

Requirement N/A Record

Z-Axis CTE (TMA)

Reference:

IPC-TM-650 Method 2.4.24. Glass Transition Temperature and Z-Axis Expansion by TMA IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 24 Z-Axis CTE (TMA)

Z-Axis CTE Alpha 1 Average of two specimens 37.92 ppm/°C

N/A Record

Ventec Electronics (SUZHOU) Co., Ltd.

2 1 mis C 1 E 1 mpina 2 11 verage of two specimens 109.5 1 pping	Z-Axis CTE Alpha 2	Average of two specimens	189.54	ppm/°C
--	--------------------	--------------------------	--------	--------

N/A Record

Z-Axis CTE 50-260 Average of two specimens 1.875 ppm/°C

N/A Record

Time to Delamination

Reference:

IPC-TM-650 Method 2.4.24.1 Time to Delamination (TMA Method)
IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 25 Time to Delamination (TMA)

Delamination T260	Average of two specimens	60	min
	Requirement	<u>N/A</u>	Record
Delamination T288	Average of two specimens	39.95	min
	Requirement	<u>N/A</u>	Record
Delamination T300	Average of two specimens	22.06	min
	Requirement	<u>N/A</u>	Record

Dimensional Stability

Reference:

IPC-TM-650 Method 2.4.39 Dimensional Stability, Glass Reinforced Thin Laminates IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 26 Dimensional Stability Thin

Ventec Electronics (SUZHOU) Co., Ltd.

Dimensional Stability Bake Thin Average of three specimens

Machine direction 118 ppm

Requirement -300 to +300 ppm Pass

Dimensional Stability Stress Thin Average of three specimens

Cross direction 70 ppm

Requirement -300 to +300 ppm Pass

Table 27 Dimensional Stability Thick

Machine direction 26 ppm

Requirement -300 to +300 ppm Pass

Cross direction 71 ppm

Requirement -300 to +300 ppm Pass

Solderability (Edge Dip Test)

Reference:

IPC-J-STD-003C; Method 4.2.1 Edge Dip Test

IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 28 Solderability

Solderability Thin Sample surface exhibited good wetting Pass Solderability Thick Sample surface exhibited good wetting Pass

Ventec Electronics (SUZHOU) Co., Ltd.

Chemical Resistance

Reference:

IPC-TM-650 Method 2.3.4.2 Chemical Resistance of Laminates, Prepreg and Coated Foil Products by Solvent Exposure.

IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 29 Chemical Resistance

Chemical Resistance Thin Average of three specimens

Weight increase (Check & Record) 0.12%

Requirement Appearance after bake No change Pass
Requirement Appearance after solvent No change Pass

Chemical Resistance Thick Average of three specimens

Weight increase (Check & Record) 0.09%

Requirement Appearance after bake No change Pass
Requirement Appearance after solvent No change Pass

Metal Surface Cleanability

Reference:

IPC-TM-650 Method 2.3.1.1 Chemical Cleaning of Metal-Clad Laminate IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 30 Metal Surface Cleanability

Metal Surface Cleanability Three specimens

Requirement The metal cladding on the test specimen shall

be cleaned to a uniform matte finish.

Deionized or distilled water poured on the

surface does not bead or form puddles. Pass

Ventec Electronics (SUZHOU) Co., Ltd.

Pressure Cooker Test

Reference:

IPC-TM-650 Method 2.6.16 Pressure Vessel Method for Glass Epoxy Laminate Integrity IPC-4101D/41 Specification for Base Materials for Rigid and Multilayer Printed Board

Results:

Table 31 Pressure Cooker Test

Pressure Cooker Test Five specimens

Requirement The samples shall have no measles,

blisters or surface erosion Pass

CERTIFICATE OF CONFORMANCE

Ventec Electronics (Suzhou) Co. Ltd. certifies that the test equipment used complies with the requirements of correlation criterion and that data contained in this report is accurate within the tolerance limitation of the equipment.

The report is invalid without the signature of the reviewer and the approver.

Reviewed by: Approved by:

John Yi HJ Chen.

HJ Chen

QA Engineer QA Manager

November 17, 2022 November 17, 2022