
IPC-2501

Definition for Web-Based

Exchange of XML Data

(Message Broker)

ASSOCIATION CONNECTING
ELECTRONICS INDUSTRIES ®

2215 Sanders Road, Northbrook, IL 60062-6135
Tel. 847.509.9700 Fax 847.509.9798

www.ipc.org

IPC-2501
July 2003 A standard developed by IPC

The Principles of
Standardization

In May 1995 the IPC’s Technical Activities Executive Committee adopted Principles of
Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
• Show relationship to Design for Manufacturability

(DFM) and Design for the Environment (DFE)
• Minimize time to market
• Contain simple (simplified) language
• Just include spec information
• Focus on end product performance
• Include a feedback system on use and

problems for future improvement

Standards Should Not:
• Inhibit innovation
• Increase time-to-market
• Keep people out
• Increase cycle time
• Tell you how to make something
• Contain anything that cannot

be defended with data

Notice IPC Standards and Publications are designed to serve the public interest through eliminating mis-
understandings between manufacturers and purchasers, facilitating interchangeability and improve-
ment of products, and assisting the purchaser in selecting and obtaining with minimum delay the
proper product for his particular need. Existence of such Standards and Publications shall not in
any respect preclude any member or nonmember of IPC from manufacturing or selling products
not conforming to such Standards and Publication, nor shall the existence of such Standards and
Publications preclude their voluntary use by those other than IPC members, whether the standard
is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adop-
tion may involve patents on articles, materials, or processes. By such action, IPC does not assume
any liability to any patent owner, nor do they assume any obligation whatever to parties adopting
the Recommended Standard or Publication. Users are also wholly responsible for protecting them-
selves against all claims of liabilities for patent infringement.

IPC Position
Statement on
Specification
Revision Change

It is the position of IPC’s Technical Activities Executive Committee (TAEC) that the use and
implementation of IPC publications is voluntary and is part of a relationship entered into by
customer and supplier. When an IPC publication is updated and a new revision is published, it
is the opinion of the TAEC that the use of the new revision as part of an existing relationship
is not automatic unless required by the contract. The TAEC recommends the use of the latest
revision. Adopted October 6. 1998

Why is there
a charge for
this document?

Your purchase of this document contributes to the ongoing development of new and updated industry
standards and publications. Standards allow manufacturers, customers, and suppliers to understand
one another better. Standards allow manufacturers greater efficiencies when they can set up their
processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards
and publications development process. There are many rounds of drafts sent out for review and
the committees spend hundreds of hours in review and development. IPC’s staff attends and par-
ticipates in committee activities, typesets and circulates document drafts, and follows all necessary
procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low to allow as many companies as possible to participate.
Therefore, the standards and publications revenue is necessary to complement dues revenue. The
price schedule offers a 50% discount to IPC members. If your company buys IPC standards and
publications, why not take advantage of this and the many other benefits of IPC membership as
well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.

©Copyright 2003. IPC, Northbrook, Illinois. All rights reserved under both international and Pan-American copyright conventions. Any copying,
scanning or other reproduction of these materials without the prior written consent of the copyright holder is strictly prohibited and constitutes
infringement under the Copyright Law of the United States.

IPC-2501

Message Broker
– GENERIC

Definition for Web-Based
Exchange of XML Data

A standard developed by the CAMX Frameworks Communication
Committee (2-50).

The IPC-2501 standard specifies the governing semantics and an XML
based syntax for shop floor communication between electronic assembly
equipment and associated software applications. Wherever possible,
existing and widely accepted protocols have been utilized. Certain
guaranteed behaviours have been defined to ensure that mission-
critical data is reliably communicated among Clients. The purpose of
the standard is to outline the communication architecture, supporting
XML messages, and to define the choreography between sender and
receiver.

Users of this publication are encouraged to participate in the
development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798

ASSOCIATION CONNECTING
ELECTRONICS INDUSTRIES ®

Acknowledgment
Any document involving a complex technology draws material from a vast number of sources. While the principal members
of the CAMX Frameworks Communication Committee (2-50) are shown below, it is not possible to include all of those who
assisted in the evolution of this standard. To each of them, the members of the IPC extend their gratitude.

CAMX Frameworks
Communication Committee

Technical Liaisons of the
IPC Board of Directors

Chair
Andrew D. Dugenske
Georgia Institute of Technology

Nilesh S. Naik
Eagle Circuits Inc.

Sammy Yi
Flextronics International

CAMX Frameworks Communication Committee

Robert E. Neal, Agilent Technologies

Kay Lannen, Agilent Technologies

Jeremy Nuanes, Agilent Technologies

Jason Schnitzer, Agilent Technologies

John Minchella, Celestica

Robert Voitus, Celestica

Jorge Camargo, Cookson Electronics
Equipment Group

Richard Johnson, DEK Printing
Machines Ltd.

Andrew Oughton, DEK Printing
Machines Ltd.

Mike Rogers, DEK Printing
Machines Ltd.

Richard Coblens, Fuji America
Corporation

Monte Cramer, Fuji America
Corporation

Michael Kimpton, Fuji America
Corporation

Kevin Kroplewski, Fuji America
Corporation

Tony Picciola, Fuji America
Corporation

Andrew D. Dugenske, Georgia
Institute of Technology

Douglas A. Furbush, Georgia Institute
of Technology

Andrew Scholand, Georgia Institute
of Technology

Jeffrey Gerth, Georgia Tech Research
Institute

John Cartwright, Intel Corporation

Douglas Jackson, Intel Corporation

David Martin, Intel Corporation

Hannu Ronkainen, Jot Automation

Mark Doyle, Mapics, Inc.

Brian Nigro, Mapics, Inc.

Brent Bohmont, Motorola Inc.

Mark Williams, Motorola

Dan Pattyn, Motorola, Inc.

Jim Brazelton, NACOM Corporation

Louis Watson, NACOM Corporation

Kevin Brady, NIST Nat’l. Institute of
Stds & Technology

Barbara Goldstein, NIST Nat’l.
Institute of Stds & Technology

Michael McLay, NIST Nat’l. Institute
of Stds & Technology

John Messina, NIST Nat’l. Institute
of Stds & Technology

Rick Lloyd, Nortel Networks

Dave J. Morris, Nortel Networks

Tony Wong, Nortel Networks

Hitoshi Nakamura, Panasonic

Tom Baggio, Panasonic Factory
Automation

Hiro Kurata, Panasonic Factory
Automation

Tak Yokoi, Panasonic Factory
Automation

Moustafa Noureddine, Router
Solutions Inc.

Robert Schwanke, Siemens

Dilip Soni, Siemens

Cord Burmeister, Siemens Dematic
Corporation

Tuan M. Nguyen, Siemens Dematic
Elect. Asmbly. Systems

Art Sedighi, Talarian Corporation

Grace Yee, Talarian Corporation

Niko Siltala, Tampere University of
Technology Institute of Production
Engineering

Carey Price, TechCenter

Rudi Streif, Teradyne Inc.

Allan Fraser, Teradyne Inc.

Rob Bryla, Universal Instruments
Corporation

Tom J. Dinnel, Universal Instruments
Corporation

Jerry Lowery, Visiprise, Inc.

IPC-2501 July 2003

ii

Table of Contents

1 Scope .. 2
1.1 General Design Principals ... 2
1.2 Intended Audience .. 2

2 Interpretation ... 2
3 General Requirements.. 3

3.1 Terms and Definitions.. 3
3.2 Communication Architecture .. 3

3.2.1 TCP/IP Usage.. 4
3.2.2 HTTP Usage.. 4
3.2.3 SOAP with Attachments Usage .. 5

3.3 Message Transfer ... 7
3.3.1 Client to Message Broker Transfer ... 8
3.3.2 Message Broker to Client Transfer ... 8
3.3.3 Client to Client Transfer (Point-to-Point) ... 9

3.4 Quality of Service .. 10
3.4.1 Guaranteed Message Delivery ... 10
3.4.2 Data Integrity... 11
3.4.3 Acknowledge ... 11
3.4.4 Queue Full Operation... 11

3.5 Domain Configuration .. 12
4 IPC-2501 Messages ... 13

4.1 GetDomainConfiguration ... 13
4.2 DomainConfiguration ... 14

4.2.1 DomainConfiguration Element .. 14
4.2.2 Broker Element.. 14
4.2.3 ClientList Element ... 15
4.2.4 Client Element ... 15
4.2.5 PublishList Element ... 16
4.2.6 ReceiveList Element .. 16
4.2.7 SubscriptionList Element ... 17
4.2.8 DomainConfiguration ... 17

4.3 DomainConfigurationChange ... 19
4.4 GetMessage.. 20
4.5 Acknowledge... 21
4.6 Error ... 22

5 Process Flow Diagrams. ... 24
5.1 Client to Message Broker Transfer... 24
5.2 Message Broker to Client Transfer... 25

6 Example Domain Configuration... 26
7 References .. 29
Appendix A... 30

 iii

IPC-2501 July 2003

Definition for Web-Based Exchange of XML Data

Introduction

Information flow is essential to efficient electronics manufacturing and standards are essential to
information flow. One area of commerce that has lacked its own communication standards is the
electronics manufacturing factory floor. Information exchange between a system of electronic
assembly equipment and higher-level applications has, in the past, used proprietary or borrowed
standards. The IPC-254X and IPC-255X series of standards address this issue by defining the
messages needed for this information exchange.

Just as “snail mail” and e-mail information exchanging requires standards for the envelope and
transportation mechanisms – or messaging interface – so also do factory floor communications.
This standard describes a messaging interface that is based upon an architecture whereby a
single logical middleware server (the Message Broker) exchanges messages among Clients in a
Domain.

Clients may be electronics manufacturing equipment or software applications present in the
domain. The Message Broker acts as an intelligent message router between these Clients,
accomplishing both Point-to-Point and Publish/Subscribe communications. Figure 1 shows a
computer-aided manufacturing XML (CAMX) Domain consisting of the Message Broker, Application
Clients, and Equipment Clients.

Although the scope of this document is that of electronics manufacturing, the broader
applicability of the message transport mechanisms defined by this standard must be noted. Any
application that uses XML-based messages can use the IPC-2501 web-based exchange
mechanism. Specifically, this standard can support the exchange of XML-based messages both
within an enterprise, be it manufacturing or service based -- and externally -- between multiple
enterprises having the need for efficient, reliable web-based communications. Broad adoption of
this standard is strongly encouraged.

Figure 1 Example IPC-2501 Domain consisting of the Message Broker,
Application Clients, and Equipment Clients

 1

IPC-2501 July 2003

•

•

•

•

•

•

1 Scope

The intent of this standard is to establish the governing semantics and an XML based syntax for
shop floor communication between electronic assembly equipment and associated software
applications. Wherever possible, existing and widely accepted protocols have been utilized.
Certain guaranteed behaviors have been defined to ensure that mission-critical data is reliably
communicated among Clients.

The purpose of this specification is to outline the communication architecture and supporting
XML messages. The required programmatic actions that define the choreography between
sender and receiver have also been defined.

The domain of this standard is that of an electronics assembly manufacturing shop, consisting of
up to several hundred machines, each of which is capable of producing tens of messages per
second. Most of these messages are relatively small in size (under 20 kilobytes); however some
application-specific files of several megabytes will occasionally need to be transferred. The
number of consumers of this information is assumed to be a relatively small number, typically
less than 20, and this number does not directly increase in proportion to the number of
machines. Provisions have also been made to accommodate network interruptions.

1.1 General Design Principals

Many different levels of system complexity are possible in addressing the intent outlined above.
The industry participants guiding the development of this standard set forth the following design
principles:

Low Cost
Low Complexity
Stable
Deterministic
Centrally Configured
Scalable

1.2 Intended Audience

This document is intended for an audience of manufacturing system software developers,
computer aided manufacturing application programmers and Information Technology
professionals as well as an end user community that includes process engineers and
manufacturing specialists.

2 Interpretation

"Shall", the emphatic form of the verb, is used throughout this standard whenever a requirement
is intended to express a provision that is mandatory. Deviation from a shall requirement is not
permitted, and compliance with the XML syntax and semantics shall be followed without
ambiguity, or the insertion of superfluous information. The words "should" and "may" are used
whenever it is necessary to express non-mandatory provisions. "Will" is used to express a
declaration of purpose.

To assist the reader, the word shall is presented in boldface characters.

 2

IPC-2501 July 2003

3 General Requirements

The XML schemas contained in this document describe the structures for a CAMX data
exchange. The document specifies data elements specifically designed to establish the
information exchange capabilities as related to the electronics manufacturing factory floor. The
XML schemas define the configuration of mandatory and optional elements, as well as
mandatory and optional attributes.

3.1 Terms and Definitions

The definitions of all terms used herein shall be as specified in IPC-1050, and by the following:

Client – A generic term for any of the various machines, applications, or devices that may
connect to a Message Broker in a Domain.

Domain - The set of all Clients interested in communicating with each other. It contains a single
logical Message Broker and a configurable number of Clients.

Domain Configuration - The Domain Configuration defines publishing capabilities, subscription
interests, point-to-point communication privileges, quality of service parameters and general
information about the Domain.

Message Broker - The Message Broker is the messaging middleware. It is responsible for
intelligently routing messages among Clients.

3.2 Communication Architecture
In accordance with the intent of using broadly accepted standards where possible, this system
makes use of TCP/IP, HTTP, XML, and SOAP as illustrated in Figure 2.

Message Exchange (IPC 2501)

Transport (HTTP)

Network (TCP/IP)

Message Syntax (XML)

Message Semantics (IPC 251X - 258X)

Packaging (SOAP w/ Attachments)
(IPC 2501 Extensions)

Figure 2 IPC-2501 Layered Communications Architecture

There are two chief advantages of this standards-based approach. First, re-invention and re-
implementation of basic commodity functionality is minimized. Second, the use of widely
accepted Internet standards will make the IPC-2501 more attractive to potential implementers.

The way in which SOAP with attachments and the HTTP protocol are used together to represent
IPC-2501 messages is illustrated in Figure 3.

 3

IPC-2501 July 2003

HTTP 1.1

SOAP with Attachments MIME Envelope

MIME Block

SOAP Envelope

SOAP Header

SOAP Body

IPC 2501, MessageInfo

MIME Block

CAMX Message

SOAP Faults

Figure 3 The IPC-2501 transmission structure

3.2.1 TCP/IP Usage

TCP/IP is used by this standard because it is absolutely standardized and offers the highest
assurance that all types of systems from all vendors can communicate effectively.

3.2.2 HTTP Usage

All transfers of messages in an IPC-2501 Domain are accomplished via the HTTP 1.1 protocol
through the Message Broker. The Message Broker acts as an HTTP Server and the Clients act
as HTTP Clients.

A transaction consists of two HTTP transmissions. The first transmission is an HTTP Client
Request and shall be initiated by a Client. The second transmission is an HTTP Server
Response, and shall be accomplished by the Message Broker (see Figure 4).

The HTTP Client Request shall use the HTTP POST method. The HTTP Server shall Respond
with either an HTTP 200 or an HTTP 500 status code. An HTTP 200 status code shall indicate
that the HTTP request has succeeded. An HTTP 500 status code shall indicate the Message
Broker encountered an unexpected HTTP condition that prevented it from fulfilling the request.

For further information about HTTP 1.1, see:

http://www.w3.org/Protocols/rfc2616/rfc2616.html.

 4

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IPC-2501 July 2003

Broker
HTTP Server

Client
HTTP Client

HTTP Request

HTTP Response

Figure 4 An HTTP Request/Response Transaction between a Client and the
Message Broker. All communication in an IPC-2501 Domain follows this pattern.

3.2.3 SOAP with Attachments Usage

In addition to HTTP, SOAP with Attachments shall be used to transfer messages. Each HTTP
transmission as defined in the previous section shall contain two MIME blocks. The first MIME
block shall contain a SOAP Envelope. The second MIME block shall contain the message that is
being transferred. (note: Future versions of this standard may use multiple MIME blocks to
transfer additional data.)

The SOAP Envelope contains a SOAP Header element and a SOAP Body element. The SOAP
Header element shall contain an IPC-2501 MessageInfo as a child element. If a SOAP fault has
been generated, the SOAP Body shall contain the SOAP fault (see Figure 5).

Figure 5 Location of MessageInfo element within the SOAP Envelope

For more information about SOAP Version 1.1, see:
http://www.w3.org/TR/SOAP/

For more information about SOAP with Attachments, see:
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211.html

The SOAP 1.1 envelope schema can be found at:
http://schemas.xmlsoap.org/soap/envelope/

 5

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211.html
http://schemas.xmlsoap.org/soap/envelope/

IPC-2501 July 2003

3.2.3.1 MessageInfo Element

The MessageInfo element contains meta-level information about the message that is contained
in the second MIME block of each HTTP transmission. Attributes of the MessageInfo element
provide origination and destination context to the message so that it can be routed appropriately.
Attributes are also included that indicate the schema of the message, a unique identifier, and the
date and time of the message.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

sender anyURI The unique, predefined name of the entity in the
Domain sending this message.

1

destination anyURI The unique, predefined name of the entity in the
Domain where this message is to be sent.

1

dateTime dateTime The date and time of the message. 1

messageSchema anyURI The location of the schema of the attached message
represented by this element.

1

messageId string An attribute representing the unique identifier of the
message.

1

URI: http://webstds.ipc.org/2501/MessageInfo.xsd

Graphic Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
 elementFormDefault = "qualified">
 <xsd:element name = "MessageInfo">
 <xsd:complexType>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 <xsd:attribute name = "sender" use = "required" type = "xsd:anyURI"/>
 <xsd:attribute name = "destination" use = "required" type = "xsd:anyURI"/>
 <xsd:attribute name = "messageId" use = "required" type = "xsd:string"/>
 <xsd:attribute name = "messageSchema" use = "required" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

3.2.3.1.1 Unique ID Generation

Each message shall be uniquely identified for the purpose of acknowledgement, logging,
response correlation and other purposes. Identifier strings must be printable characters and may
be generated in any fashion that will produce an identifier with a name space collision possibility
of zero.

 6

http://webstds.ipc.org/2501/Envelope.xsd

IPC-2501 July 2003

Recommended Methods:
Systematic identification can be attained through requests for a 128 bit Globally Unique Identifier
(GUID) or Universally Unique Identifier (UUID). Where such identification is not readily available
the recommended methodology is to concatenate the sender’s internet protocol (IP) address or
networking hardware machine (MAC) address with a string representing the current date, time
and time zone. This will typically produce 1/100 second accuracy. Where this is not of sufficient
resolution to meet the message generation rate, appending an additional counting sequence is
recommended (i.e. "130.207.198.100|20010501013725.85+5000|00").

3.3 Message Transfer

Most all CAMX messages will be exchanged among two or more Clients through the Message
Broker. Only messages conveying Domain information will involve just the Message Broker and
an individual Client. All messages, including those from one Client to another, shall be sent to
the Message Broker. In this respect the Message Broker functions as a publisher, taking a
submission from a Client and distributing it to all the Clients that have requested submissions of
that type. Unsolicited submissions are not allowed; the Message Broker obtains a list of
messages each Client can generate and makes the list of messages available to all Clients. The
Message Broker then instructs each Client to generate only those messages to which at least
one Client has subscribed.

Under normal operations a Client needs only to send a message once, regardless of the number
of subscribers. It is the responsibility of the Message Broker to ensure the message is replicated
and delivered to each and every Client who has subscribed to that message. Consuming Clients
may receive the messages not in chronological sequence though.

When the Message Broker receives a submitted message it places the message in a first-in-first-
out queue and awaits a request for messages from the subscribed Client(s). Each subscribed Client
periodically queries the Message Broker as to whether or not there are any queued messages (see 4.4
GetMessage). By this practice, messages will be received by the Client in the sequence that they were
received by the Message Broker.

The normal rules here established for publication of messages do not apply to point-to-point
communication. A Client, if authorized in the Domain configuration, can send a message to
another Client. Such a message might, for example, request information as to the current value
of a specific parameter. Such point-to-point messages shall follow the same rules as published
messages in that they are sent to the Message Broker who queues the message, completing the
delivery only when the receiving Client requests its messages. Sections 3.3.1 to 3.3.4 contain
additional details about successfully transferring a message. Section 5 contains guidance for
handling errors that might occur when attempting to transfer a message.

 7

IPC-2501 July 2003

3.3.1 Client to Message Broker Transfer

The transfer of a message from a Client to the Message Broker is accomplished via two HTTP
transmissions (see Figure 6).

Broker
HTTP Server

Client
HTTP Client

HTTP POST <MessageC1>

HTTP 200<Acknowledge>

Figure 6 The successful transfer of a message from a Client to the Message Broker.
The message was Acknowledged by the Message Broker.

The specifics of the transmissions are as follows:

1. The Client shall transmit the message via an HTTP POST request, in which the message to
be transferred is included in the second MIME block.

2. The Message Broker shall respond with an HTTP 200 status code, and an Acknowledge
contained in the second MIME block.

3.3.2 Message Broker to Client Transfer

The transfer of a message from the Message Broker to a Client is accomplished via four HTTP
transmissions (see Figure 7).

Broker
HTTP Server

Client
HTTP Client

HTTP 200<empty>

HTTP POST <Acknowledge>

HTTP 200 <MessageB1>

HTTP POST <getMessage>

Figure 7 The successful transfer of a message from the Message Broker to a Client

 8

IPC-2501 July 2003

The specifics of the transmissions are as follows:

1. The Client shall transmit an IPC-2501 GetMessage via an HTTP POST request, in which the
GetMessage is included in the second MIME block.

2. The Message Broker shall respond with an HTTP 200 status code, and the message to be
transferred contained in the second MIME block.

3. The Client shall transmit an Acknowledge via an HTTP POST request, in which the
Acknowledge is contained in the second MIME block.

4. The Message Broker shall respond with an HTTP 200 status code, and an empty SOAP
envelope.

If no messages are queued by the Message Broker for the Client, only two HTTP transmissions
will take place (see Figure 8).

Broker
HTTP Server

Client
HTTP Client

HTTP 200 <empty>

HTTP POST <getMessage>

Figure 8 When a message is not waiting for a Client, only two HTTP transmissions take place

The specifics of the transmissions are as follows:

1. The Client shall transmit an IPC-2501 GetMessage via an HTTP POST request, in which the
GetMessage is included in the second MIME block.

2. The Message Broker shall respond with an HTTP 200 status code, and an empty SOAP
envelope.

3.3.3 Client to Client Transfer (Point-to-Point)

The transfer of a message from one Client to another Client is accomplished through the
Message Broker via six HTTP transmissions (see Figure 9).

Note: This Standard enforces single-level, Broker–Client acknowledgement for Point-to-Point
messages; End-to-End acknowledgement is not overtly supported.

 9

IPC-2501 July 2003

Broker
HTTP Server

Client1
HTTP Client

HTTP POST <MessagetoC2>

HTTP 200 <Acknowledge>

HTTP 200 <MessagetoC2>

HTTP POST <getMessage>

Client2
HTTP Client

HTTP 200<empty>

HTTP POST <Acknowledge>

Figure 9 Client to Client transfer

The specifics of the transmissions are as follows:

1. Client1 shall transmit the message via an HTTP POST request, in which the message to be
transferred is included in the second MIME block.

2. The Message Broker shall respond with an HTTP 200 status code, and an Acknowledge
contained in the second MIME block.

3. Client2 shall transmit an IPC-2501 GetMessage via an HTTP POST request, in which the
GetMessage is included in the second MIME block.

4. The Message Broker shall respond with an HTTP 200 status code, and the message to be
transferred contained in the second MIME block.

5. Client2 shall transmit an Acknowledge via an HTTP POST request, in which the
Acknowledge is contained in the second MIME block.

6. The Message Broker shall respond with an HTTP 200 status code, and an empty SOAP
envelope.

3.4 Quality of Service

In the factory floor environment of this standard, the data about the product can be as important
as the product itself. Because of this, the industry participants guiding the development of this
standard set forth a Quality of Service guideline resulting in the choreography of message
queuing, sending, resending and acknowledgement that follows.

3.4.1 Guaranteed Message Delivery

Guaranteed Message Delivery is accomplished by adopting some simple rules aimed at data
integrity. The Acknowledge message shall be used to indicate when conformance to these rules
has been achieved. Because the unlimited application of these data integrity rules could quickly
overwhelm the message storage capabilities of the nodes within the IPC-2501 domain, Quality of

 10

IPC-2501 July 2003

Service terms (data integrity rules) can be applied to bound the message storage used by IPC-
2501 data for both the Client and the Message Broker. Each of these concepts is described in
greater detail in the sub-sections below.

3.4.2 Data Integrity

Data to be published is initially the responsibility of the producing Client and remains its
responsibility until such time as it sends the data as an IPC-2501 message AND receives an
Acknowledgement of receipt of the message from the Message Broker. Only at that time has the
Client passed responsibility for the data exchange to the Message Broker. Until that time a copy
of the data shall remain with the Client in non-volatile media.

The Message Broker shall be responsible for the message data until such time as the Message
Broker has passed a copy of the message to all Clients that have subscribed to that message
type from the producing Client, AND received an Acknowledgement of receipt of the message
from each of these Clients. Until that time a copy of the data shall remain with the Message
Broker in non-volatile media.

3.4.3 Acknowledge
Acknowledge is a response from either the Message Broker to a Client or vice-versa indicating
receipt and acceptance of data.
A Client SHALL NOT transmit a new message until the Message Broker has acknowledged the
previous message. The Message Broker SHALL NOT transmit a new message to a particular
Client until that Client has acknowledged the previous message.

Acknowledge specifically does not indicate application level cognizance of the message. It does
not provide any assurance that the message payload was syntactically correct, was understood,
or was agreed to by the recipient. Message Broker Acknowledge does not imply that the
message has reached its intended recipient. All messages shall be acknowledged with the
following exceptions:

1) Acknowledge messages themselves are not acknowledged
2) Error messages are not acknowledged
3) The empty response (i.e. “no messages queued”) to a GetMessage request is not

acknowledged

3.4.4 Queue Full Operation

Since media is finite, the non-volatile memory allocated by the Message Broker for a Client may
become full. There are two permissible policies for storage overflow: loss and loss-less. These
policies are indicated respectively by ERASE and STOP values in the queueFullOperation
attribute of the DomainConfiguration. A QueueFull condition is defined as a queue that contains the
maximum number of messages that it can store as specified by the queueSizeAttribute of the Client
element, see Section 4.2.4.

The loss policy (indicated by an attribute value of ERASE) permits the discarding of sufficient
messages from non-volatile memory to resume operations.

The loss-less policy (indicated by an attribute value of STOP) only allows the discard of
messages held for a Client via human intervention (including a domain change). If Message
Broker persistent media resources are insufficient to store incoming messages, all such incoming
messages are refused (i.e., NOT Acknowledged) until such time as confirmed delivery of

 11

IPC-2501 July 2003

currently persisted messages frees up sufficient non-volatile memory to resume server
operations.

Note that these rules as described above establish a delivery policy of at least once, meaning if
a communication between Message Broker and Client is interrupted before a message exchange
transaction is complete, then the initiating party will resend the message. If the interruption
results in a corruption of the acknowledgement rather than the message transmission, these
rules will result in a duplicate copy of the message arriving at the destination. All 2501 Clients
must therefore be tolerant to duplicate messages as identified by the messageId attribute.

3.5 Domain Configuration

The Domain is configured “statically,” or more specifically, externally to the IPC-2501 message
exchange process by an Administrator. The DomainConfiguration schema listed in Section 4.2
provides a list of what options may be configured.

It is recommended that all Clients begin message transfer within the Domain by sending the
Message Broker an initial GetDomainConfiguration message, to assure the Client is
communicating with the intended broker in the intended domain. If the Client is not listed in the
Domain Configuration, an Error will be generated (see Section 4.6 Error for a complete list of
error codes).

 12

IPC-2501 July 2003

4 IPC-2501 Messages

Many functions of the 2501 Domain (such as event notification, persistence, and status retrieval)
are controlled via XML messages carried as MIME attachments to the SOAP envelope. The
following sections document the information models (schemas) of these messages.

4.1 GetDomainConfiguration

This message is sent by a Client to the Message Broker to obtain the current
DomainConfiguration.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

dateTime dateTime The time stamp capturing the instant the Client
created the GetDomainCharacteristics message.

1

domainName string The name of the Domain that the Message Broker is
servicing.

1

Extensions Element An optional element for containing non-standard XML
messages and references.

0-1

1Occurrence

URI: http://webstds.ipc.org/2501/GetDomainConfiguration.xsd
Graphical Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name = "DomainConfigurationChange">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Extensions" minOccurs = "0"/>
 </xsd:sequence>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 <xsd:attribute name = "domainName" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Extensions">
 <xsd:complexType/>
 </xsd:element>
</xsd:schema>

 13

http://webstds.ipc.org/2501/GetDomainConfiguration.xsd

IPC-2501 July 2003

•

•

•

•

•

4.2 DomainConfiguration

The DomainConfiguration defines the configuration of the Domain. It specifically defines the
following:

The publishing capabilities of all Clients and the Message Broker
The subscription interests of each Client
The point-to-point messages that the Message Broker will deliver to each Client
Quality of service information
General information about the Domain

The DomainConfiguration is returned to a Client in response to a GetDomainConfiguration
message.

Individual elements of the schema are described in Sections 4.2.1 to 4.2.7. The comprehensive
DomainConfiguration schema is listed in the Section 4.2.8.

4.2.1 DomainConfiguration Element
The root element of the DomainConfiguration schema is the DomainConfiguration element.
Information about the Message Broker is contained in the Broker sub-element and information
about the Clients is contained in the ClientList sub-element. The attributes contain general
information about the domain.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

domainName string The name of the Domain that the Message Broker is
servicing.

1

dateTime dateTime The time and date when the DomainConfiguration
was created or last modified.

1

author string The author of the DomainConfiguration 1

comments string Comments about the DomainConfiguration 1

Broker Element Aggregates information associated with the Message
Broker

1

ClientList Element Aggregates Information about all the Clients 1

4.2.2 Broker Element

The Broker Element contains information about the Message Broker. Specifically, the messages
that the Message Broker is capable of publishing are contained in the PublishList sub-element,
and the name of the Message Broker is contained in the attributes.

 14

IPC-2501 July 2003

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

brokerName anyURI The unique URI for the the Message Broker. 1

PublishList Element A list of all messages the Message Broker is capable
of publishing.

1

4.2.3 ClientList Element

The ClientList element contains one or more Client elements.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

Client Element Aggregates information on a per Client basis 1-n

4.2.4 Client Element

The Client element contains information about an individual Client. Specifically, the messages
that the Client is cable of publishing are contained in the PublishList sub-element, the messages
the Client will accept are contained in the ReceiveList sub-element and the messages the Client
desires to receive are contained in the SubscriptionList sub-element.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

clientName anyURI The name of the Client. A unique URI for each
Client.

1

queueSize integer The maximum number of messages that will be
stored for a Client by the Message Broker. A “1”
indicates no persistent storage SHALL be used.
(note that a value of “0” would disable a client.)

1

queueFullOperation Enumerated String
(“ERASE” and
“STOP”)

The desired data overflow behavior. ERASE erases a
sufficient number of messages to continue operation.
STOP indicates that the Message Broker will not
accept additional messages for the queue until
messages have been delivered from the queue.

1

 15

IPC-2501 July 2003

PublishList Element A list of all messages that a Client or the Message
Broker is capable of publishing.

1

ReceiveList Element The only messages that the Message Broker will
send this Client via Point-to-Point communication.

1

SubscriptionList Element A list of messages the Client desires. 1

4.2.5 PublishList Element

The PublishList element contains the list of messages that the Message Broker or Clients are
capable of publishing.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

MessageSchema anyURI A message URI that indicates the schema that
corresponds to a message.

0-n

4.2.6 ReceiveList Element

The ReceiveList element contains the list of Point-to-Point messages that a Client will accept
from other Clients. The messages in the ReceiveList are grouped by sender.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

Sender Element Aggregates information on a per Sender basis. 0-n

senderName anyURI The name of the Sender. A unique URI for each
Sender.

1-n if
Sender

MessageSchema anyURI A message URI that indicates the schema that
corresponds to a message.

1-n

 16

IPC-2501 July 2003

4.2.7 SubscriptionList Element

The SubscriptionList element contains the list of messages that the Client desires to receive from
publishing Clients. The messages in the SubscriptionList are grouped by publishing Clients.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC1

Publisher Element Aggregates information of a publisher. 0-n

publisherName anyURI The name of a Publishing Client that this Client
desires to receive messages from.

1-n if
Publisher

MessageSchema anyURI A message URI that indicates the schema that
corresponds to a message.

1-n

4.2.8 DomainConfiguration

The comprehensive DomainConfiguration schema.

URI: http://webstds.ipc.org/2501/DomainConfiguration.xsd
Graphical Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name = "DomainConfiguration">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Broker"/>
 <xsd:element ref = "ClientList"/>
 </xsd:sequence>
 <xsd:attribute name = "domainName" use = "required" type = "xsd:string"/>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 <xsd:attribute name = "author" use = "required" type = "xsd:string"/>

 17

http://webstds.ipc.org/2501/DomainConfiguration.xsd

IPC-2501 July 2003

 <xsd:attribute name = "comments" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Client">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "PublishList"/>
 <xsd:element ref = "ReceiveList"/>
 <xsd:element ref = "SubscriptionList"/>
 </xsd:sequence>
 <xsd:attribute name = "clientName" use = "required" type = "xsd:anyURI"/>
 <xsd:attribute name = "queueSize" use = "required" type = "xsd:integer"/>
 <xsd:attribute name = "queueFullOperation" use = "required">
 <xsd:simpleType>
 <xsd:restriction base = "xsd:string">
 <xsd:enumeration value = "STOP"/>
 <xsd:enumeration value = "ERASE"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "SubscriptionList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Publisher" minOccurs = "0" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "PublishList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "MessageSchema" minOccurs = "0" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "ReceiveList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Sender" minOccurs = "0" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Publisher">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "MessageSchema" maxOccurs = "unbounded"/>
 </xsd:sequence>
 <xsd:attribute name = "publisherName" use = "required" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "MessageSchema" type = "xsd:anyURI"/>
 <xsd:element name = "ClientList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Client" maxOccurs = "unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Broker">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "PublishList"/>
 </xsd:sequence>
 <xsd:attribute name = "brokerName" use = "required" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Sender">
 <xsd:complexType>

 18

IPC-2501 July 2003

 <xsd:sequence>
 <xsd:element ref = "MessageSchema" maxOccurs = "unbounded"/>
 </xsd:sequence>
 <xsd:attribute name = "senderName" use = "required" type = "xsd:anyURI"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

4.3 DomainConfigurationChange

This message indicates that the DomainConfiguration has changed. To obtain the new
DomainConfiguration, Clients can send a GetDomainConfiguration to the Message Broker.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC

dateTime dateTime The time stamp capturing the instant the Message
Broker created the DomainConfigurationChange
message.

1

domainName string The name of the Domain that the Message Broker is
servicing.

1

Extensions Element An optional element for containing non-standard XML
messages and references.

0-1

URI: http://webstds.ipc.org/2501/DomainConfigurationChange.xsd
Graphical Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name = "DomainConfigurationChange">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Extensions" minOccurs = "0"/>
 </xsd:sequence>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 <xsd:attribute name = "domainName" use = "required" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Extensions">
 <xsd:complexType/>
 </xsd:element>
</xsd:schema>

 19

http://www.fis.marc.gatech.edu/xmlschemas/IPC2501/DomainChange.xsd

IPC-2501 July 2003

4.4 GetMessage

Clients send this message to the Message Broker to retrieve queued messages stored by the
Message Broker for the Client.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC

dateTime dateTime The time stamp capturing the instant the Client
created the request for Message Broker-side
messages.

1

Extensions Element An optional element for containing non-standard XML
messages and references.

0-1

URI: http://webstds.ipc.org/2501/GetMessage.xsd
Graphical Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name = "GetMessage">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Extensions" minOccurs = "0"/>
 </xsd:sequence>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Extensions">
 <xsd:complexType/>
 </xsd:element>
</xsd:schema>

 20

http://webstds.ipc.org/2501/GetMessages.xsd

IPC-2501 July 2003

4.5 Acknowledge

Acknowledge is used to confirm the receipt of a message.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC

dateTime dateTime The time stamp capturing the instant the Message
Broker created the DomainCharacteristics message.

1

MessageId Element An element representing each messages unique ID. 1

Extensions Element An optional element for containing non-standard XML
messages and references.

0-1

URI: http://webstds.ipc.org/2501/Acknowledge.xsd
Graphical Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name = "Acknowledge">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "MessageId"/>
 <xsd:element ref = "Extensions" minOccurs = "0"/>
 </xsd:sequence>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Extensions">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name = "MessageId" type = "xsd:string"/>
</xsd:schema>

 21

http://webstds.ipc.org/2501/Acknowledge.xsd

IPC-2501 July 2003

4.6 Error

The Error message is used to communicate that an applications error has occurred. It is
generated when the receiver of a message (Client or Message Broker) determines that a
message is internally inconsistent, or when the receiver is not able to recognize or resolve the
message content. A set of predefined errors must be supported by an IPC-2501 compliant
Message Broker.

ATTRIBUTE NAME ATTRIBUTE TYPE DESCRIPTION OCC

dateTime dateTime The time stamp capturing the instant the Acknowledge
message was created.

1

messageIdReference string A reference to the messageId of the problem
message.

1

errorCode string A unique value for each error type. 1

note string The description of the error. 0-1

Extensions Element An optional element for containing non-standard XML
messages and references.

0-1

URI: http://webstds.ipc.org/2501/Error.xsd
Graphical Representation:

Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name = "Error">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref = "Extensions" minOccurs = "0"/>
 </xsd:sequence>
 <xsd:attribute name = "dateTime" use = "required" type = "xsd:dateTime"/>
 <xsd:attribute name = "messageIdReference" use = "required" type = "xsd:string"/>
 <xsd:attribute name = "errorCode" use = "required" type = "xsd:string"/>
 <xsd:attribute name = "note" type = "xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name = "Extensions">
 <xsd:complexType/>
 </xsd:element>
</xsd:schema>

 22

http://webstds.gatech.edu/2501/Error.xsd

IPC-2501 July 2003

Predefined Error Codes and Notes

errorCode NOTE

NO ATTACHMENTS INCLUDED No attachments were included with request.

INVALID ENTITY NAME Your name is not a valid entity in the Domain.

NOT WELL FORMED XML 2501 The 2501 message transmitted was not well formed XML.

NOT VALID XML 2501 The 2501 message transmitted was not valid XML.

TYPE MISMATCH Message sent was not of the type described in the message
header.

UNRECOGNIZED MESSAGE TYPE 2501 Unrecognized 2501 message type transmitted.

NO MESSAGE TO ACKNOWLEDGE You are attempting to acknowledge a message that was not sent
to you, has expired in transit, or should not have been
acknowledged.

BAD DOMAIN This broker is not servicing the requested Domain.

NO PERMISSION TO PUBLISH The current Domain configuration does not grant you permission
to publish.

NO PUBLISHING SCHEMA IN DOMAIN The current Domain configuration does not grant you permission
to publish messages of this schema.

MESSAGEID NOT UNIQUE Duplicate (non-unique) messageId used to identify a message
referencing a different message schema. Message will not be
processed..

UNNECESSARY PUBLISHING It is not necessary for you to send messages of this schema
because no Clients in this Domain have subscribed to the
selected schema.

QUEUE FULL Your queue has become full; as a result, some messages may
have been truncated.

BAD POINT TO POINT DESTINATION The destination Client was not found in the Domain

NO POINT TO POINT PERMISSION IN
DOMAIN

The current Domain configuration does not grant permission to
send a message of that schema to that Client

 23

IPC-2501 July 2003

5 Process Flow Diagrams.

Section 3.3 outlines the simple choreography of successful message transfer. This section
contains non-normative process flow diagrams outlining the decisions to be made by lower level
applications, to assist in the development of IPC-2501 Clients.

5.1 Client to Message Broker Transfer

Client Posts
Message to

Message Broker

NO

Start

YES

Log SOAP Fault

Log IPC-2501
Error

Log Broker Error

DONE

Log
HTTP Error500

YES

YES

NO

200

NO

NO

HTTP Response
Received from

Message Broker?

HTTP Status Code
Received from the
Message Broker?

SOAP Fault in the
SOAP Body Element?

IPC-2501 Error in
Second MIME Block?

IPC-2501
Acknowledgement in
Second MIME Block?

YES

YES

Valid MessageInfo
Element in SOAP

Header?

Log MessageInfo
ErrorNO

Figure 10 The process flow diagram for a Client transferring a message to a Message Broker

 24

IPC-2501 July 2003

5.2 Message Broker to Client Transfer

Client Posts
GetMessage to
Message Broker

Start

YES

Log SOAP Fault

Log IPC-2501 Error

Log HTTP Error500

YES

YES

200

NO

HTTP Response
Received from

Message Broker?

HTTP Status Code
Received

SOAP Fault in the
SOAP Body Element?

IPC-2501 Error in
Second MIME Block?

NO

YES

Valid Data in Message
Info Element in SOAP

Header?
Log MessageInfo ErrorNO

Message Transferred
from Message Broker

to Client

NO

SOAP Envelope
Empty?

Message Broker had
no Messages for Cient

NO

YES

Figure 11 The process flow diagram for a Client receiving a message from the Message Broker

 25

IPC-2501 July 2003

6 Example Domain Configuration

<?xml version="1.0" encoding="UTF-8" ?>
<IPC2501DC:DomainConfiguration

xmlns:IPC2501DC="http://webstds.gatech.edu/2501/DomainConfiguration.xsd"
dateTime="2003-03-27T15:54:17.02-05:00"
comments="New clients for IPC-2501 doc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
author="Doug"
xsi:noNamespaceSchemaLocation="http://webstds.gatech.edu/2501/DomainConfiguration.xsd"
domainName="IPC-2501 Reference Implementation">

<Broker brokerName="broker.fis.marc.gatech.edu">
<PublishList>

<MessageSchema>http://webstds.gatech.edu/2501/DomainConfigurationChange.xsd</Message
Schema>

 </PublishList>
 </Broker>

<ClientList>
<Client clientName="Client1.marc.gatech.edu" queueSize="200" queueFullOperation="STOP">
<PublishList>

<MessageSchema>http://webstds.gatech.edu/2501/GetDomainConfiguration.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarm.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentChangeState.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentError.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentHeartbeat.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentWarning.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemIdentifierRead.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferIn.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferLane.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferOut.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferZone.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkComplete.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/OperatorInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2546/MaterialHandlerTrouble.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessSessionStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ItemProcessStatus.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessStepStatus.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ItemRepair.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/InspectionFrame.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessSessionEnd.xsd</MessageSchema>
</PublishList>
<ReceiveList>
<Sender senderName="Client2.marc.gatech.edu">
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarmCleared.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/OperatorInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentPowerOff.xsd</MessageSchema>
</Sender>
</ReceiveList>
<SubscriptionList>
<Publisher publisherName="broker.fis.marc.gatech.edu">
<MessageSchema>http://webstds.gatech.edu/2501/DomainConfigurationChange.xsd</MessageSchema>
</Publisher>
<Publisher publisherName="Client2.marc.gatech.edu">
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarm.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentChangeState.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentError.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentHeartbeat.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentWarning.xsd</MessageSchema>

 26

IPC-2501 July 2003

 <MessageSchema>http://webstds.ipc.org/2541/ItemIdentifierRead.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferIn.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferLane.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferOut.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferZone.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkComplete.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarmCleared.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentPowerOff.xsd</MessageSchema>

 </Publisher>
 </SubscriptionList>
 </Client>
<Client clientName="Client2.marc.gatech.edu" queueSize="200" queueFullOperation="STOP">
<PublishList>
 <MessageSchema>http://webstds.gatech.edu/2501/GetDomainConfiguration.xsd</MessageSchema>

 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarm.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentChangeState.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentError.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentHeartbeat.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentWarning.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemIdentifierRead.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferIn.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferLane.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferOut.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferZone.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkComplete.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/OperatorInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2546/MaterialHandlerTrouble.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessSessionStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ItemProcessStatus.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessStepStatus.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/InspectionFrame.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessSessionEnd.xsd</MessageSchema>
</PublishList>
<ReceiveList>
<Sender senderName="Client1.marc.gatech.edu">
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentWarning.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/OperatorInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarmCleared.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentPowerOff.xsd</MessageSchema>

</Sender>
</ReceiveList>
<SubscriptionList>
<Publisher publisherName="broker.fis.marc.gatech.edu">
 <MessageSchema>http://webstds.gatech.edu/2501/DomainConfigurationChange.xsd</MessageSche

ma>
</Publisher>
<Publisher publisherName="Client1.marc.gatech.edu">
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarm.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentChangeState.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentError.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentHeartbeat.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentInformation.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentWarning.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemIdentifierRead.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferIn.xsd</MessageSchema>

 27

IPC-2501 July 2003

 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferLane.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferOut.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemTransferZone.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/ItemWorkComplete.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentAlarmCleared.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2541/EquipmentPowerOff.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2546/MaterialHandlerTrouble.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessSessionStart.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ItemProcessStatus.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessStepStatus.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/InspectionFrame.xsd</MessageSchema>
 <MessageSchema>http://webstds.ipc.org/2547/ProcessSessionEnd.xsd</MessageSchema>

 </Publisher>
 </SubscriptionList>
</Client>
</ClientList>
</IPC2501DC:DomainConfiguration>

 28

IPC-2501 July 2003

7 References

HTTP – Hypertext Transport Protocol is an application-level, generic, stateless, object-oriented
protocol for distributed, collaborative, hypermedia information systems. A feature of HTTP is the
typing and negotiation of data representation, allowing systems to be built independently of the
data being transferred. HTTP has been in use by the World-Wide Web global information
initiative since 1990. For further information about HTTP 1.1, see
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

MIME - Multipurpose Internet Mail Extension. MIME was conceived to extend the format of
Internet mail to allow non-US-ASCII textual messages, non-textual messages, multipart message
bodies, and non-US-ASCII information. See RFC2045, RFC2046, RFC2047, RFC2048, RFC2049
for full specifications.

SOAP – Simple Object Access Protocol. A transport-independent protocol that uses XML to
invoke remote methods.

For more information about SOAP Version 1.1, see:
http://www.w3.org/TR/SOAP/

For more information about SOAP with Attachments, see:
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211.html

The SOAP 1.1 envelope schema can be found at:
http://schemas.xmlsoap.org/soap/envelope/

TCP/IP – An Internet communications protocol comprised of two components. TCP is responsible
for verifying the correct delivery of data from client to server, and IP is responsible for moving
packet of data from node to node.

XML – eXtensible Markup Language. A meta-language (based on the ISO 8879 standard on
Standard Generalized Markup Language) for describing embedded markup languages with
particular emphasis on the World Wide Web Communications Architecture.

 29

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211.html
http://schemas.xmlsoap.org/soap/envelope/

IPC-2501 July 2003

Appendix A – IPC Web-based Standards (IPC25XX)

The web-based standards (IPC 25XX) are designed to foster application integration and
electronic commerce through data and information interchange standards based on XML. It
assumes that application programs (including equipment interfaces) are distinct entities, and
application integration takes place using a loosely coupled, message-passing approach. There is
no need for a common object model, programming language, persistent storage mechanism or
operating system for two applications to exchange XML messages formatted using the web-
based standards. The two applications simply need to be able to format, transmit, receive and
consume a standardized XML message.

The IPC web-based standards series have been identified for each of the value-added activities
occurring throughout the product life cycle of an electronics product. The web-based standards
are:

IPC-2500 – Framework Standard
IPC-2510 – Product Data Representation
IPC-2520 – Product Data Quality
IPC-2530 – Surface Mount Equipment Standard Recipe File Format
IPC-2540 – Shop Floor Equipment Communications
IPC-2550 – Manufacturing Execution Systems Communications
IPC-2560 – Enterprise Resource Planning Systems Communications
IPC-2570 – Supply Chain Communications
IPC-2580 – Product Manufacturing Descriptions

Table A-1 shows the correlation of the different standards in each of the series. Although not
every standard has been started, the figure represents a coordinated opportunity to maintain
consistency throughout the standard development cycle.

 30

IPC-2501 July 2003

 31

Table A-1 CAD/CAM Standardization
IPC Number/
Function

-xxx1
Generic

-xxx2
Administ

-xxx3
Documnt

-xxx4
Board
Fabricat

-xxx5
Bare Bd
Test

-xxx6
Assy
Manufac

-xxx7
Assy/
Test/
Insp.

-xxx8
Comp. &
Material

-xxx9
Informa.
Modeling

IPC-2500 CAMX
Framework

IPC-
2501
(Pub)

IPC-2510
GenCAM
Product Data

IPC-
2511A
2511B
(Pub)

IPC-
2512A
(Pub)

IPC-
2513A
(Pub)

IPC-
2514A
(Pub)

IPC-
2515A
(Pub)

IPC-
2516A
(Pub)

IPC-
2517A
(Pub)

IPC-
2518A
(Pub)

IPC-
2519A
(Pub)

IPC-2520
Quality
Product Data

 IPC-
2524
(Pub)

IPC-2530 SRFF
Process Data
Recipe file

IPC-
2531
(Pub)

IPC-2540 Shop
Floor
Communication

IPC-
2541
(Pub)

 IPC-
2546
(Pub)

IPC-
2547
(Pub)

IPC-2550
Execution
Communication

IPC-
2551
Working
draft

 IPC-
2554
Working
draft

IPC-2560
Enterprise
Communication

IPC-2570
Supply Chain
Communication

IPC-
2571
(Pub)

 IPC-
2576
(Pub)

IPC-
2577
(Final
draft)

IPC-
2678
(Pub)

IPC-2580
Product
Manufacturing
Descriptions

IPC-
2581
Propsd
Std

Messages are the basis of the web-based standards. Messages are the means to integrate
applications at the business-process level by defining a loosely coupled, request-based
communication process. Since many business processes involve one party performing a service
at the request of another party, the mapping of messages to requests is natural. An XML-based
messaging system with open, extensible formats captures the essential elements of an
electronics business communication message while allowing flexible implementations.

It is anticipated that in the vast majority of interchanges, the exchange of XML documents and
messages between trading partners or applications will occur. Implementation using the web-
based standards will use a simple hyper-text transfer protocol (HTTP) transport, but business
can also use other transports including file transfer protocol (FTP) and message queuing
technologies. At times, a message may be short and distinct; other times the message may
contain a large file or a linkage to a URI. In many instances, the data represents an action
required and becomes a part of a contractual agreement between customer and supplier.

In today’s environment, many new applications are gaining native support for XML schema.
These message and file transfers will require layered software that transforms native data types
into XML or vice versa and converts the characteristics of the XML message into processing
actions by machines, personnel, or processes.

	Scope
	General Design Principals
	Intended Audience

	Interpretation
	General Requirements
	Terms and Definitions
	Communication Architecture
	TCP/IP Usage
	HTTP Usage
	SOAP with Attachments Usage
	MessageInfo Element
	Unique ID Generation

	Message Transfer
	Client to Message Broker Transfer
	Message Broker to Client Transfer
	Client to Client Transfer (Point-to-Point)

	Quality of Service
	Guaranteed Message Delivery
	Data Integrity
	Acknowledge
	Queue Full Operation

	Domain Configuration

	IPC-2501 Messages
	GetDomainConfiguration
	DomainConfiguration
	DomainConfiguration Element
	Broker Element
	ClientList Element
	Client Element
	PublishList Element
	ReceiveList Element
	SubscriptionList Element
	DomainConfiguration

	DomainConfigurationChange
	GetMessage
	Acknowledge
	Error

	Process Flow Diagrams.
	Client to Message Broker Transfer
	Message Broker to Client Transfer

	Example Domain Configuration
	References

