Table of Contents

1.0 General .. 1-1
1.1 Scope .. 1-1
1.2 Purpose .. 1-1
1.3 Classification 1-1
1.4 Measurement Units and Applications 1-1
 1.4.1 Verification of Dimensions 1-1
1.5 Definition of Requirements 1-1
 1.5.1 Inspection Conditions 1-2
 1.5.1.1 Acceptable 1-2
 1.5.1.2 Defect 1-2
 1.5.1.2.1 Disposition 1-2
 1.5.1.3 Process Indicator 1-2
 1.5.1.4 Conditions Not Specified 1-2
 1.5.1.5 Uncommon or Specialized Designs 1-2
 1.5.2 Material and Process Nonconformance 1-3
1.6 Process Control 1-3
 1.6.1 Statistical Process Control 1-3
1.7 Order of Precedence 1-3
 1.7.1 Clause References 1-4
 1.7.2 Appendices 1-4
1.8 Terms and Definitions 1-4
 1.8.1 FOD (Foreign Object Debris) 1-4
 1.8.2 Inspection 1-4
 1.8.3 Manufacturer (Assembler) 1-4
 1.8.4 Objective Evidence 1-4
 1.8.5 Process Control 1-4
 1.8.6 Supplier 1-4
 1.8.7 User .. 1-4
 1.8.8 Diameter 1-4
 1.8.8.1 Conductor 1-4
 1.8.8.2 Wire .. 1-4
 1.8.8.3 Strand 1-4
 1.8.9 Engineering Documentation 1-4
1.9 Requirements Flowdown 1-4
1.10 Personnel Proficiency 1-5
1.11 Acceptance Requirements 1-5
1.12 Inspection Methodology 1-5
 1.12.1 Process Verification Inspection 1-5
 1.12.2 Visual Inspection 1-5
 1.12.2.1 Lighting 1-5
 1.12.2.2 Magnification Aids 1-5
1.13 Facilities .. 1-6
 1.13.1 Field Assembly Operations 1-6
 1.13.2 Health and Safety 1-6
1.14 Electrostatic Discharge (ESD) Protection 1-6
1.15 Tools and Equipment 1-6
 1.15.1 Control .. 1-6
 1.15.2 Calibration 1-7
1.16 Materials and Processes 1-7
1.17 Electrical Clearance 1-7
1.18 Contamination 1-7
 1.19 Rework/Repair 1-8
 1.19.1 Rework 1-8
 1.19.2 Repair 1-8
 1.19.3 Post Rework/Repair Cleaning 1-8
2.0 Applicable Documents 2-1
 2.1 IPC .. 2-1
 2.2 Joint Industry Standards 2-1
 2.3 Society of Automotive Engineers (SAE) 2-1
 2.4 American National Standards Institute (ANSI) ... 2-1
 2.5 International Organization for Standardization (ISO) .. 2-2
 2.6 ESD Association (ESDA) 2-2
 2.7 United States Department of Defense (DoD) 2-2
 2.8 International Electrotechnical Commission (IEC) .. 2-2
 2.9 Aerospace Industries Association (AIA/NAS) 2-2
 2.10 Electronics Industries Alliance 2-2
 2.11 ASTM International 2-2
 2.12 Institute of Electrical and Electronics Engineers .. 2-2
 3.0 Wires .. 3-1
 3.1 Stripping .. 3-1
 3.2 Strand Damage and End Cuts 3-1
 3.3 Conductor Deformation/Birdcaging 3-4
 3.4 Twisting of Wires 3-6
 3.5 Insulation Damage – Stripping 3-7
 4.0 Soldered Terminations 4-1
 4.1 Materials and Components 4-1

IPC/WHMA-A-620E October 2022 ix
4.1.1 Materials .. 4-1
4.1.1.1 Solder .. 4-1
4.1.1.1.1 Solder Purity Maintenance 4-2
4.1.2 Flux ... 4-3
4.1.3 Adhesives 4-3
4.1.4 Solderability 4-4
4.1.5 Gold Removal 4-4

4.2 Cleanliness 4-5
4.2.1 Presoldering 4-5
4.2.2 Post soldering 4-5
4.2.2.1 Foreign Object Debris (FOD) 4-5
4.2.2.2 Flux Residue 4-6
4.2.2.2.1 Cleaning Required 4-6
4.2.2.2.2 No-Clean Process 4-6

4.3 Solder Connection 4-7
4.3.1 General Requirements 4-9
4.3.2 Soldering Anomalies 4-10
4.3.2.1 Exposed Basis Metal 4-10
4.3.2.2 Partially Visible or Hidden Solder Connections 4-10

4.4 Wire/Lead Preparation, Tinning 4-11
4.5 Wire Insulation 4-13
4.5.1 Clearance 4-13
4.5.2 Post soldering 4-15

4.6 Insulation Sleeving 4-16
4.7 Soldered Strand Separation (Birdcaging) . 4-18

4.8 Terminals .. 4-19
4.8.1 Turrets and Straight Pins 4-22
4.8.1.1 Lead/ Wire Placement 4-22
4.8.1.2 Solder 4-24
4.8.2 Bifurcated 4-25
4.8.2.1 Lead/ Wire Placement – Side Route ... 4-25
4.8.2.2 Lead/ Wire Placement – Bottom and Top Route 4-27
4.8.2.3 Lead/ Wire Placement – Staked/ Constrained Wires 4-29
4.8.2.4 Solder 4-30
4.8.3 Slotted 4-32
4.8.3.1 Lead/ Wire Placement 4-32
4.8.3.2 Solder 4-33
4.8.4 Pierced/ Perforated/ Punched 4-34
4.8.4.1 Lead/ Wire Placement 4-34
4.8.4.2 Pierced/ Perforated/ Punched – Solder 4-36

4.8.5 Hook ... 4-37
4.8.5.1 Lead/ Wire Placement 4-37
4.8.5.2 Solder 4-39
4.8.6 Cup ... 4-40
4.8.6.1 Lead/ Wire Placement 4-40
4.8.6.2 Solder 4-41
4.8.7 Series Connected 4-43
4.8.8 Connection Requirements – Lead/ Wire Placement – AWG 30 and Smaller Diameter Wires 4-44

5.0 Crimp Terminations (Contacts and Lugs) .5-1
5.1 Stamped and Formed – Open Barrel 5-3
5.1.1 Insulation Support 5-4
5.1.1.1 Inspection Window 5-4
5.1.1.2 Crimp 5-6
5.1.2 Insulation Clearance if No Support Crimp 5-8
5.1.3 Conductor Crimp 5-9
5.1.4 Crimp Bellmouth 5-11
5.1.5 Conductor Brush 5-13
5.1.6 Carrier Cutoff Tab 5-15
5.1.7 Individual Wire Seal 5-16

5.2 Stamped and Formed – Closed Barrel 5-18
5.2.1 Insulation Clearance 5-19
5.2.2 Insulation Support Crimp 5-20
5.2.3 Conductor Crimp and Bellmouth 5-21
5.2.4 Cutoff Tabs 5-23

5.3 Machined Contacts 5-24
5.3.1 Insulation Clearance 5-24
5.3.2 Insulation Support Style 5-26
5.3.3 Conductor 5-27
5.3.4 Crimping 5-29
5.3.5 CMA Buildup 5-31

5.4 Termination Ferrule Crimp 5-33
5.5 Shrink Sleeving – Wire Support – Crimped Terminals 5-35

6.0 Insulation Displacement Connection (IDC) . 6-1
6.1 Mass Termination, Flat Cable 6-2
6.1.1 End Cutting 6-2
6.1.2 Notching 6-3
6.1.3 Planar Ground Plane Removal 6-4
6.1.4 Connector Position 6-5
6.1.5 Connector Skew and Lateral Position ... 6-8
6.1.6 Retention 6-9
Table of Contents (cont.)

6.2 Discrete Wire Termination 6-10
 6.2.1 General ... 6-10
 6.2.2 Position of Wire 6-11
 6.2.3 Overhang (Extension) 6-12
 6.2.4 Insulation Crimp 6-13
 6.2.5 Damage in Connection Area 6-15
 6.2.6 End Connectors 6-16
 6.2.7 Pass Through Connectors 6-17
 6.2.8 Wiremount Connectors 6-18
 6.2.9 Subminiature D-Connector (Series Bus Connector) 6-19
 6.2.10 Modular Connectors (RJ Type) 6-21

7.0 Ultrasonic Welding .. 7-1
 7.1 Insulation Clearance 7-1

7.2 Weld Nugget .. 7-3

8.0 Splices ... 8-1
 8.1 Soldered Splices .. 8-1
 8.1.1 Mesh ... 8-2
 8.1.2 Wrap ... 8-3
 8.1.3 Hook .. 8-4
 8.1.4 Lap .. 8-5
 8.1.4.1 Two or More Conductors 8-5
 8.1.4.2 Insulation Opening (Window) 8-7
 8.1.5 Heat Shrinkable Solder Devices 8-8

8.2 Crimped Splices .. 8-10
 8.2.1 Barrel ... 8-10
 8.2.1.1 Insulation Opening (Window) 8-13
 8.2.2 Double Sided 8-14
 8.2.3 Contact ... 8-17
 8.2.4 Wire In-Line Junction Devices (Jiffy Junctions). 8-18

8.3 Ultrasonic Weld Splices 8-19

8.4 Sleeving Over Splices 8-20

9.0 Connectorization .. 9-1
 9.1 Hardware Mounting 9-1
 9.1.1 Jackpost – Height 9-1
 9.1.2 Jackscrews – Protrusion 9-2
 9.1.3 Retaining Clips 9-3
 9.1.4 Connector Alignment 9-4

9.2 Strain Relief ... 9-5
 9.2.1 Clamp Fit .. 9-5
 9.2.2 Wire Dress ... 9-6
 9.2.2.1 Straight Approach 9-7
 9.2.2.2 Side Approach 9-8

9.3 Sleeving and Boots .. 9-9
 9.3.1 Position ... 9-9
 9.3.2 Bonding .. 9-10

9.4 Connector Damage ... 9-13
 9.4.1 Criteria ... 9-13
 9.4.2 Limits – Hard Face – Mating Surface 9-14
 9.4.3 Limits – Soft Face – Mating Surface or Rear Seal Area. 9-15
 9.4.4 Contacts ... 9-16

9.5 Installation of Contacts and Sealing Plugs into Connectors 9-17
 9.5.1 Installation of Contacts 9-17
 9.5.2 Installation of Sealing Plugs 9-19

10.0 Over-Molding/Potting 10-1
 10.1 Over-Molding .. 10-2
 10.1.1 Mold Fill ... 10-2
 10.1.1.1 Inner .. 10-2
 10.1.1.2 Outer .. 10-5
 10.1.1.2.1 Mismatch 10-8
 10.1.1.2.2 Fit .. 10-9
 10.1.1.2.3 Cracks, Flow Lines, Chill Marks (Knit Lines) or Weld Lines 10-12
 10.1.1.2.3.1 Color 10-14
 10.1.1.2.3.2 Blow Through 10-15
 10.1.1.2.3.3 Position 10-16
 10.1.1.2.3.4 Flashing 10-19
 10.1.1.2.3.5 Wire Insulation, Jacket or Sleeving Damage 10-21
 10.1.1.2.3.6 Curing 10-22

10.2 Potting (Thermoset Molding) 10-23
 10.2.1 Filling ... 10-23
 10.2.2 Fit to Wire or Cable 10-26
 10.2.3 Curing .. 10-28

10.3 Over-Molding of Flexible Flat Ribbon 10-29
 10.3.1 Mounting and Alignment Feature Adhesion 10-31
 10.3.2 Adhesion Between Ribbon and Connector Potting 10-31
 10.3.3 Mounting Hardware 10-32

11.0 Measuring Cable Assemblies and Wires 11-1
Table of Contents (cont.)

11.1 Measuring – Cable and Wire Length
 Tolerance .. 11-1
11.2 Measuring – Cable 11-1
 11.2.1 Reference Surfaces –
 Straight/Axial Connectors 11-2
 11.2.2 Reference Surfaces –
 Right-Angle Connectors 11-2
 11.2.3 Length 11-2
 11.2.4 Breakout 11-4
 11.2.4.1 Breakout Measurement Points .. 11-3
 11.2.4.2 Breakout Length 11-4
11.3 Measuring – Wire 11-5
 11.3.1 Electrical Terminal Reference Location .. 11-5
 11.3.2 Length 11-6
12.0 Marking/Labeling 12-1
12.1 Content 12-1
12.2 Legibility 12-2
12.3 Permanency 12-3
12.4 Location and Orientation 12-4
12.5 Functionality 12-5
12.6 Marker Sleeve 12-6
 12.6.1 Wrap Around 12-6
 12.6.2 Tubular 12-8
12.7 Flag Markers 12-9
 12.7.1 Adhesive 12-9
12.8 Tie Wrap Markers 12-10
13.0 Coaxial and Biaxial Cable Assemblies 13-1
13.1 Stripping 13-1
13.2 Center Conductor Termination 13-4
 13.2.1 Crimp 13-4
 13.2.2 Solder 13-6
13.3 Solder Ferrule Pins 13-8
 13.3.1 General 13-8
 13.3.2 Insulation 13-10
13.4 Coaxial Connector –
 Printed Wire Board Mount 13-11
13.5 Coaxial Connector – Center Conductor
 Length – Right Angle Connector 13-12
13.6 Coaxial Connector –
 Center Conductor Solder 13-13
13.7 Coaxial Connector – Terminal Cover 13-15
13.7.1 Soldering 13-15
 13.7.2 Press Fit 13-16
13.8 Shield Termination 13-17
 13.8.1 Clamped Ground Rings 13-17
 13.8.2 Crimped Ferrule 13-18
13.9 Center Pin 13-20
 13.9.1 Position 13-20
 13.9.2 Damage 13-21
13.10 Semirigid Coax 13-22
 13.10.1 Bending and Deformation 13-23
 13.10.2 Surface Condition 13-25
 13.10.2.1 Solid 13-25
 13.10.2.2 Conformable Cable 13-27
 13.10.3 Dielectric Cutoff 13-28
 13.10.4 Dielectric Cleanliness 13-30
 13.10.5 Center Conductor Pin 13-31
 13.10.5.1 Point 13-32
 13.10.5.2 Damage 13-34
 13.10.6 Semirigid Coax – Solder 13-34
13.11 Swage-Type Connector 13-36
13.12 Soldering and Stripping of Biaxial/Multi-Axial
 Shielded Wire 13-37
 13.12.1 Jacket and Tip Installation 13-37
 13.12.2 Ring Installation 13-39
14.0 Securing 14-1
14.1 Tie Wrap/Lacing Application 14-1
 14.1.1 Tightness 14-6
 14.1.2 Damage 14-7
 14.1.3 Spacing 14-7
14.2 Breakouts 14-8
 14.2.1 Individual Wires 14-8
 14.2.2 Spacing 14-9
14.3 Routing 14-12
 14.3.1 Wire Crossover 14-12
 14.3.2 Bend Radius 14-13
 14.3.3 Coaxial Cable 14-14
 14.3.4 Unused Wire Termination 14-15
 14.3.4.1 Shrink Sleeving 14-15
 14.3.4.2 Flexible sleeving 14-16
 14.3.5 Ties over Splices and Ferrules 14-16
14.4 Broom Stitching 14-17
15.0 Harness/Cable Electrical Shielding 15-1
Table of Contents (cont.)

15.1 Braided .. 15-1
15.1.1 Direct Applied .. 15-2
15.1.2 Prewoven ... 15-4

15.2 Shield Termination .. 15-5
15.2.1 Shield Jumper Wire 15-5
15.2.1.1 Attached Lead 15-5
15.2.1.1.1 Solder ... 15-6
15.2.1.1.2 Crimp ... 15-10
15.2.1.2 Shield Braid 15-11
15.2.1.2.1 Woven 15-11
15.2.1.2.2 Combed and Twisted 15-11
15.2.1.3 Daisy Chain 15-12
15.2.1.4 Common Ground Point 15-12
15.2.2 Utermininated Shield 15-13
15.2.2.1 Shield Not Folded Back 15-13
15.2.2.2 Shield Folded Back 15-14

15.3 Shield Termination – Connector 15-15
15.3.1 Shrink ... 15-15
15.3.2 Crimp ... 15-17
15.3.3 Shield Jumper Wire Attachment 15-19
15.3.4 Soldered ... 15-20

15.4 Shield Termination – Splicing Prewoven 15-20
15.4.1 Soldered ... 15-21
15.4.2 Tie/Tape On ... 15-23

15.5 Tapes – Barrier and Conductive, Adhesive or Non-Adhesive 15-24

15.6 Conduit (Shielding) 15-25

15.7 Shrink Tubing – Conductive Lined 15-26

16.0 Cable/Wire Harness Protective Coverings 16-1

16.1 Braid .. 16-1
16.1.1 Direct Applied 16-1
16.1.2 Prewoven ... 16-3

16.2 Sleeving/Shrink Tubing 16-5
16.2.1 Sealant ... 16-6

16.3 Spiral Plastic Wrap (Spiral Wrap Sleeving) 16-7

16.4 Wire Loom Tubing – Split and Unsplit 16-8

16.5 Tapes, Adhesive and Non-Adhesive 16-8

17.0 Finished Assembly Installation 17-1

17.1 General .. 17-1

17.2 Hardware Installation 17-2
17.2.1 Threaded Fasteners 17-3
17.2.1.1 Minimum Torque 17-5
17.2.2 Wires ... 17-7
17.2.2.1 Solid Wires 17-8
17.2.2.2 Stranded Wires 17-10
17.2.3 Safety Wiring .. 17-11
17.2.4 Safety Cable ... 17-13

17.3 Wire/Harness Installation 17-14
17.3.1 Stress Relief ... 17-14
17.3.2 Wire Dress .. 17-15
17.3.3 Service Loops 17-16
17.3.4 Clamping .. 17-17
17.3.5 Tie Wrap/Lacing 17-17
17.3.6 Raceways ... 17-18
17.3.7 Grommets ... 17-19
17.3.7.1 Sealing Not Required 17-19
17.3.7.2 Sealing Required 17-20

18.0 Solderless Wrap ... 18-1

19.0 Testing .. 19-1
19.1 Nondestructive Tests 19-1
19.2 Testing After Rework or Repair 19-1
19.3 Intended Table Usage 19-1

19.4 Electrical Test .. 19-2
19.4.1 Selection ... 19-2

19.5 Electrical Test Methods 19-3
19.5.1 Continuity .. 19-3
19.5.2 Shorts .. 19-4
19.5.3 Dielectric Withstanding Voltage (DWV) 19-5
19.5.4 Insulation Resistance (IR) 19-6
19.5.5 Voltage Standing Wave Ratio (VSWR) 19-7
19.5.6 Insertion Loss 19-7
19.5.7 Reflection Coefficient 19-8
19.5.8 User Defined .. 19-8

19.6 Mechanical Test .. 19-9
19.6.1 Selection ... 19-9

19.7 Mechanical Test Methods 19-10
19.7.1 Crimp Height (Dimensional Analysis) 19-10
19.7.1.1 Terminal Positioning 19-11
19.7.2 Pull Force (Tensile) 19-12
19.7.2.1 Without Documented Process Control 19-13
19.7.3 Crimp Force Monitoring 19-17
19.7.4 Crimp Tool Qualification 19-17
19.7.5 Contact Retention Verification 19-17

IPC/WHMA-A-620E October 2022
Table of Contents (cont.)

19.7.6 RF Connector Shield Pull Force (Tensile) 19-18
19.7.7 RF Connector Shield Ferrule Torsion 19-19
19.7.8 User Defined 19-19
20.0 High Voltage Applications 20-1
Appendix A Terms and Definitions A-1
Appendix B Reproducible Test Tables B-1
Appendix C Guidelines for Soldering Tools and Equipment C-1
Appendix D X-Ray Guidelines D-1

Tables
Table 1-1 Magnification Aid Applications – Wire and Wire Connections 1-5
Table 1-2 Magnification Aid Applications – Other ... 1-6
Table 3-1 Allowable Strand Damage 3-3
Table 4-1 Maximum Limits of Solder Bath Contaminant 4-2
Table 4-2 Solder Connection Anomalies 4-10
Table 4-3 Turret or Straight Pin Terminal Lead/Wire Placement 4-22
Table 4-4 Bifurcated Terminal Lead/Wire Placement – Side Route 4-25
Table 4-5 Bifurcated Terminal Lead/Wire Placement – Bottom Route 4-27
Table 4-6 Staking Requirements of Side Route Straight Through Connections – Bifurcated Terminals 4-29
Table 4-7 Pierced/Perforated/Punched Terminal Lead/Wire Placement 4-34
Table 4-8 Hook Terminal Lead/Wire Placement ... 4-37
Table 4-9 AWG 30 and Smaller Wire Wrap Requirements 4-44
Table 11-1 Cable/Wire Length Measurement Tolerance 11-1
Table 13-1 Coaxial and Biaxial Shield and Center Conductor Damage 13-1
Table 13-2 Semirigid Coax Deformation 13-24
Table 13-3 Dielectric Cutoff 13-28
Table 14-1 Minimum Bend Radius Requirements 14-13
Table 17-1 Minimum Swaged Ferrule Pull-Off Load 17-13
Table 19-1 Electrical Test Requirements 19-3
Table 19-2 Continuity Test Minimum Requirements 19-4
Table 19-3 Shorts Test (low voltage isolation) Minimum Requirements 19-5
Table 19-4 Dielectric Withstanding Voltage Test (DWV) Minimum Requirements 19-6
Table 19-5 Insulation Resistance (IR) Test Minimum Requirements 19-7
Table 19-6 Voltage Standing Wave Ratio (VSWR) Test Parameters 19-8
Table 19-7 Insertion Loss Test Parameters 19-8
Table 19-8 Reflection Coefficient Test Parameters .. 19-9
Table 19-9 Mechanical Test Requirements 19-10
Table 19-10 Crimp Height Testing 19-11
Table 19-11 Pull Force Testing Minimum Requirements 19-14
Table 19-12 Pull Test Force Values 19-15
Table 19-13 Pull Test Force Values (Classes 1 & 2) For UL, SAE, GM and Volvo 19-16
Table 19-14 Pull Test Force Values (Classes 1 & 2) For IEC 19-17
Table 19-15 RF Connector Shield Pull Force Testing 19-19
Table A-1 Electrical Clearance A-2
Table 19-1 Electrical Test Requirements B-2
Table 19-2 Continuity Test Minimum Requirements B-3
Table 19-3 Shorts Test (low voltage isolation) Minimum Requirements B-4
Table 19-4 Dielectric Withstanding Voltage Test (DWV) Minimum Requirements B-5
Table 19-5 Insulation Resistance (IR) Test Minimum Requirements B-6
Table 19-6 Voltage Standing Wave Ratio (VSWR) Test Parameters B-7
Table 19-7 Insertion Loss Test Parameters B-8
Table 19-8 Reflection Coefficient Test Parameters .. B-9
Table 19-9 Mechanical Test Requirements B-10
Table 19-10 Crimp Height Testing B-11
Table 19-11 Pull Force Testing Minimum Requirements B-12
Table 19-12 Pull Test Force Values B-13
Table 19-15 RF Connector Shield Pull Force Testing B-15

xiv October 2022 IPC/WHMA-A-620E
1.0 General

1.1 Scope This standard prescribes practices and requirements for the manufacture of cable, wire and harness assemblies. This standard does not provide criteria for cross-section or X-ray evaluation. For X-ray guidelines, see Appendix D X-Ray Guidelines.

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.

The illustrations in this document portray specific points noted in the title of each section. The development committee recognizes that different parts of the industry have different definitions for some terms used herein. For the purposes of this document, the terms cable and wire harness are used interchangeably.

IPC/WHMA-A-620 can be used as a stand-alone document for purchasing products, however it does not specify frequency of in-process inspection or frequency of end product inspection. No limit is placed on the number of process indicators or the number of allowable repair/rework of defects. Such information should be developed with a statistical process control plan (see IPC-9191).

1.2 Purpose This standard describes materials, methods, tests and acceptability criteria for producing crimped, mechanically secured, or soldered interconnections and the related assembly activities associated with cable and harness assemblies.

The intent of this document is to rely on process control methodology to ensure consistent quality levels during the manufacture of products.

Any method that produces an assembly conforming to the acceptability requirements described in this standard may be used.

Standards may be updated at any time, including with the use of amendments. The use of an amendment or newer revision is not automatically required. The revision in effect shall [D1D2D3] be as specified by the User.

1.3 Classification Use of this standard requires agreement on the Class to which the product belongs. The User has the ultimate responsibility for identifying the Class to which the assembly is evaluated. If the User does not establish and document the acceptance Class, the Manufacturer may do so. Criteria defined in this standard reflect three Product Classes, which are as follows:

Class 1 General Electronic Products
Includes products suitable for applications where the major requirement is the function of the completed assembly.

Class 2 Dedicated Service Electronic Products
Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically, the end-use environment would not cause failures.

Class 3 High Performance/Harsh Environment Electronic Products
Includes products where continued performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support systems and other critical systems.

1.4 Measurement Units and Applications This document uses the International System of Units (SI) in accordance with IEEE/ASTM SI 10, American National Standard for Metric Practice (Section 3). Imperial English equivalent units follow in brackets. The derived SI units used in this document are millimeters (mm) [in] for dimensions and dimensional tolerances, Celsius (°C) [°F] for temperature and temperature tolerances, grams (g) [oz] for weight, and lux (lx) [foot-candles] for illuminance.

1.4.1 Verification of Dimensions Where not specifically invoked by this standard, actual measurements, e.g., of specific solder fillet dimensions, determination of damage and wrap percentages, are not required except for referee purposes.

1.5 Definition of Requirements The words “shall” or “shall not” are used in the text of this document wherever there is a requirement for materials, process or acceptance of cable, wire and harness assemblies.

Where the words “shall” or “shall not” indicates a requirement for at least one Class, the requirements for each Class are in brackets next to the “shall” or “shall not” requirement.

N = No requirement has been established for this Class
A = Acceptable
P = Process Indicator
D = Defect

Examples:
[A1P2D3] is Acceptable Class 1, Process Indicator Class 2 and Defect Class 3
[N1D2D3] is Requirement Not Established Class 1, Defect Classes 2 and 3
[A1A2D3] is Acceptable Classes 1 and 2, Defect Class 3
[D1D2D3] is Defect for all Classes.

Unless specifically stated otherwise, a defect for a Class 1 product means that the characteristic is also a defect for Class 2 and 3. A defect for a Class 2 product means that the characteristic is also a defect for a Class 3 product, but may not be a defect for a Class 1 product where less demanding criteria may apply.

The word “should” reflects recommendations and is used to reflect general industry practices and procedures for guidance only.

Many of the examples (figures) shown are grossly exaggerated to clearly depict the condition being described. Line drawings and illustrations are depicted herein to assist in the interpretation of the written requirements of this standard, many of these examples (figures) are grossly exaggerated to clearly depict the condition being described.

In the case of a discrepancy, the written description or written criteria always takes precedence over the illustrations.

1.5.1 Inspection Conditions The inspector shall not [D1D2D3] select the Product Class for the assembly under inspection. Documentation that specifies the applicable Class for the assembly under inspection shall [D1D2D3] be provided to the inspector. Criteria are given for each Product Class in three conditions: Acceptable, Defect or Process Indicator.

1.5.1.1 Acceptable This characteristic indicates a condition that, while not necessarily perfect, will maintain the integrity and reliability of the assembly in its service environment.

1.5.1.2 Defect A defect is a condition that fails to meet the acceptance criteria of this document or negatively affects the form, fit or function of the assembly in its end use environment. The Manufacturer shall [N1D2D3] document and disposition each defect.

It is the responsibility of the Manufacturer to identify defects that are unique to the assembly process. It is the responsibility of the User to define unique defect categories applicable to the product.

1.5.1.2.1 Disposition Disposition is the determination of how defects should be treated. Dispositions include, but are not limited to, rework, use as is, scrap or repair.

User concurrence shall [N1D2D3] be required for use as is and shall [N1N2D3] be required for repair dispositions.

1.5.1.3 Process Indicator A process indicator is a condition that identifies a characteristic that does not affect the form, function or reliability of a product. A process indicator is not a defect.

- Such condition is a result of material, design and/or operator/machine related causes that create a condition that neither fully meets the acceptance criteria nor is a defect.

- Process indicators should be monitored as part of the process control system. If the number of process indicators indicates an abnormal variation in the process, identifies an undesirable trend, or displays other conditions that indicate the process is (or is approaching) out of control, the process should be analyzed. This may result in action to reduce the variation and improve yields.

- Disposition of individual process indicators is not required and affected product should be used as is.

- Not all process indicators are specified by this standard.

- It is the responsibility of the Manufacturer to identify process indicators that are unique to the assembly process.

1.5.1.4 Conditions Not Specified Conditions that are not specified are considered acceptable unless it can be established that the condition affects end user defined form, fit, function or reliability.

1.5.1.5 Uncommon or Specialized Designs IPC/WHMA-A-620, as an industry consensus document, cannot address all of the possible product design combinations. However, the standard does provide criteria for commonly used technologies. Where uncommon or specialized technologies are used, it may be necessary to develop unique acceptance criteria. The development should include User involvement. The acceptance criteria shall [N1N2D3] have User agreement. Requirements for specialized processes and/or technologies not specified herein shall [N1D2D3] be performed in accordance with documented procedures which are available for review.

Whenever possible, new criteria or criteria on specialized products should be submitted, using the Standard Improvement Form included in this standard, to the IPC Technical Committee to be considered for inclusion in upcoming revisions of this standard.