

IPC/WHMA-A-620C-R

Rail Transit Addendum to IPC/WHMA-A-620C

Developed by the IPC/WHMA-A-620 Addendum for High Speed Railway Task Group (7-31fr) of the Product Assurance Committee (7-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC

Tel 847 615.7100 Fax 847 615.7105

Rail Transit Addendum to IPC/WHMA-A-620C

Table of Contents

The following reference numbers are to IPC/WHMA-A-620C Clauses that are added (identified with "New") or modified in this Addendum.

1.1	Scope
1.3	Classification
1.7	Order of Precedence
1.12.2.2	Magnification Aids
1.18	Contamination and Corrosion
1.18.1(New)	Contamination
1.18.2(New)	Corrosion
1.18.2.1 (New)	Red Plague (Cuprous Oxide Corrosion)
1.18.2.2 (New)	White Plague (Fluorine Attack)
3.1	Stripping
3.2	Strand Damage and End Cuts
3.5	Insulation Damage – Stripping
3.6(New)	Stripping Length
4.1.1.1	Material, Components and Equipment – Materials – Solder
4.1.1.2	Material, Components and Equipment – Materials – Flux
4.3.2.2	Solder Connection – Soldering Anomalies – Partially Visible or Hidden Solder Connections
4.4	Wire/Lead Preparation, Tinning
4.8	Terminals
4.8.6.2	Terminals – Cup – Solder
5.1.1.2	Stamped and Formed – Open Barrel – Insulation Support – Crimp
5.1.2	Stamped and Formed – Open Barrel – Insulation Clearance if No Support Crimp
5.1.3	Stamped and Formed – Open Barrel – Conductor Crimp
5.1.4	Stamped and Formed – Open Barrel – Crimp Bellmouth

5.1.5	Stamped and Formed – Open Barrel – Conductor Brush
5.1.6	Stamped and Formed – Open Barrel – Carrier Cutoff Tab
5.2	Stamped and Formed – Closed Barrel
5.2.3	Stamped and Formed – Closed Barrel – Conductor Crimp and Bellmouth
5.3.1	Machined Contacts – Insulation Clearance
5.3.3	Machined Contacts – Conductor
5.4	Termination Ferrule Crimp
5.6(New)	Copper Crimp Terminal
5.6.1(New)	Copper Crimp Terminal – Inspection Window
5.6.2(New)	Copper Crimp Terminal – Conductor Crimp Area
5.6.2.1(New)	Copper Crimp Terminal – Conductor Crimp Area – Multi-Crimp
5.6.3(New)	Copper Crimp Terminal – Insulation Clearance
5.7(New)	Spring-Crimp Terminals
5.8(New)	Screw Terminals
6.2.2	Discrete Wire Termination – Position of Wire
6.2.5	Discrete Wire Termination – Damage in Connection Area
9.1.1	Hardware Mounting – Jackpost – Height
9.1.2	Hardware Mounting – Jackscrews – Protrusion
9.1.3	Hardware Mounting – Retaining Clips
9.2.1	Strain Relief – Clamp Fit
9.3.1	Sleeving and Boots – Position
9.3.2	Sleeving and Boots – Bonding
9.4.1	Connector Damage – Criteria
9.4.2	Connector Damage – Limits – Hard Face – Mating Surface

9.4.3	Connector Damage – Limits – Soft Face – Mating Surface or Rear Seal Area
9.4.4	Connector Damage – Contacts
9.5	Installation of Contacts and Sealing Plugs into Connectors
9.5.1	Installation of Contacts and Sealing Plugs into Connectors – Installation of Contacts
9.5.2	Installation of Contacts and Sealing Plugs into Connectors – Installation of Sealing Plugs
10.1.1.2.2	Over-Molding – Mold Fill – Outer – Fit
10.1.1.2.3	Over-Molding – Mold Fill – Outer – Cracks, Flow Lines, Chill Marks (Knit Lines) or Weld Lines
11	Measuring Cable Assemblies and Wires
12.2	Legibility
12.4	Location and Orientation
12.6.2	Marker Sleeve – Tubular
12.8	Tie Wrap Markers
13	Coaxial and Biaxial Cable Assemblies
13.1	Stripping
14	Securing
14.1	Tie Wrap Application
14.1.1	Tie Wrap Application – Tightness
14.1.3	Tie Wrap Application – Spacing
14.2	Breakouts
14.3	Routing
14.3.2	Routing – Bend Radius
15.1	Braided
15.1.1	Braided – Direct Applied
15.1.2.1 (New)	Braided – Prewoven – Unsplit
15.1.2.2 (New)	Braided – Prewoven – Split
15.2	Shield Termination
15.2.1.1.1	Shield Termination – Shield Jumper Wire – Attached Lead – Solder(Heat Shrinkable Solder Device)

15.2.1.1.2 (New)	Shield Termination – Shield Jumper Wire – Attached Lead – Soldered Lead Treatment
15.2.1.1.2.1 (New)	Shield Termination – Shield Jumper Wire – Attached Lead – Soldered Lead Treatment – Soldering
15.2.1.1.2.2 (New)	Shield Termination – Shield Jumper Wire – Attached Lead – Soldered Lead Treatment – Protection
15.2.1.1.3	Shield Termination – Shield Jumper Wire – Attached Lead – Crimp
15.2.1.2.2	Shield Termination – Shield Jumper Wire – Shield Braid – Combed and Twisted
15.2.1.3	Shield Termination – Shield Jumper Wire – Daisy Chain
15.2.2	Shield Termination – No Shield Jumper Wire
15.2.2.2	Shield Termination – No Shield Jumper Wire – Shield Folded Back
15.3.2	Shield Termination – Connector – Crimp
15.3.3	Shield Termination – Connector – Shield Jumper Wire Attachment
15.4.1	Shield Termination – Splicing Prewoven – Soldered
15.5	Tapes – Barrier and Conductive, Adhesive or Non-adhesive
15.8(New)	Shielding and Grounding
16.1.2	Braid – Prewoven
16.1.2.1 (New)	Braid – Prewoven – Unsplit
16.1.2.2 (New)	Braid – Prewoven – Split
16.6(New)	Fire Prevention and Fire Protection
16.7(New)	High Voltage Protection
17.1	General
17.1.1(New)	Threaded Electrical Connection
17.2	Hardware Installation
17.3.3	Wire/Harness Installation – Service Loops
17.3.5	Wire/Harness Installation – Tie Wrap
17.3.6	Wire/Harness Installation – Raceways
17.3.8(New)	Wire/Harness Installation – Onboard Fixing

18	Solderless Wrap
18.1	Number of Turns
18.2	Turn Spacing
18.5	Connection Position
18.9.2	Damage – Wires and Terminals
19.3	Intended Table Usage
19.4.1	Electrical Test – Selection
19.5.1	Electrical Test Methods - Continuity
19.5.2	Electrical Test Methods – Shorts
19.5.3	Electrical Test Methods – Dielectric Withstanding Voltage (DWV)
19.5.4	Electrical Test Methods – Insulation Resistance (IR)
19.5.5	Electrical Test Methods – Voltage Standing Wave Ratio (VSWR)/Return Loss (RL)
19.5.6	Electrical Test Methods – Insertion Loss
19.5.7	Electrical Test Methods – Reflection Coefficient
19.5.8	Electrical Test Methods – User Defined
19.6.1	Mechanical Test – Selection
19.7.2	Mechanical Test Methods – Pull Force (Tensile)
20	High Voltage Applications
Appendix A	Terms and Definitions
Appendix B	Reproducible Test Tables
Appendix C	Guidelines for Soldering Tools and Equipment

1 General

For the purpose of this Addendum, the following topics are addressed in this section.

- 1.1 Scope
- 1.3 Classification
- 1.7 Order of Precedence

1.12.2.2 Magnification Aids

1.18 Contamination and Corrosion

- 1.18.1 Contamination
- 1.18.2 Corrosion
- 1.18.2.1 Red Plague (Cuprous Oxide Corrosion)
- 1.18.2.2 White Plague (Fluorine Attack)

1 General (Cont.)

1.1 Scope This Addendum provides additional requirements specified for rail transit applications over those published in IPC/WHMA-A-620C. It prescribes the practices and requirements for the manufacture of cable, wire and harness assemblies in rail transit industry, and it applies to Class 3 to ensure industry-specific high reliability and environmental adaptability.

This Addendum is used in conjunction with IPC/WHMA-A-620C.

For the purpose of this Addendum, if a conflict occurs between the English version and other versions of this document, the English version will take precedence.

This Addendum particularly supplements or replaces Class 3 requirements in IPC/WHMA-A-620C. Clauses not involved and requirements not mentioned, i.e., Class 1, 2 requirements, are subject to the corresponding provisions of IPC/WHMA-A-620C.

The clauses modified by this Addendum do not include subordinate clauses unless specifically stated, i.e., changes made to 1.7 do not affect 1.7.1, unless 1.7.1 is also addressed in this Addendum.

When a paragraph, e.g., the first paragraph in 15.1 of this Addendum, refers to an entire section, i.e., section 15, it's the Responsibility of the Addendum users to determine which clauses from that section are used from IPC/WHMA-A-620C and which clauses are covered by this Addendum.

Tables/Figures, including newly added as well as original or modified from IPC/WHMA-A-620C, in a section in this Addendum are numbered from "1R", e.g., Figure 3-1R, 3-2R, Table 3-1R, 3-2R in section 3.

This Addendum does not specify frequency of in-process or frequency of end-product inspection. No limit is placed on the number of Process Indicators or the number of allowable repair/rework of defects. Such information should be developed with a SPC plan (see IPC-9191). Whenever special process is involved, e.g. soldering, crimp, ISO/TS 22163 and relevant documents **shall** apply.

1.3 Classification Use of this Addendum applies to Class 3 by default. See IPC/WHMA-A-620C 1.3 for product classification and the definition of Class 3. In general, the criteria in this Addendum are more stringent or applicable to Rail Transit than the criteria for Class 3 in IPC/WHMA-A-620C.

Determination of Class relates to manufacturability, complexity, function and performance requirements, and the frequency of validation (inspection/test). The User or the Designer has the ultimate responsibility for identifying the Class to which the assembly is evaluated. If the User does not establish and document the acceptance Class, the Manufacturer may do so.

1.7 Order of Precedence

In the event of conflict, the following order of precedence applies:

- 1) Procurement as agreed between User and Manufacturer.
- 2) Engineering documentation reflecting the User's detailed requirement or end-use requirement.
- 3) When invoked by the User or per contractual agreement, this Addendum.

In case a conflict between this Addendum and the referenced documents, this Addendum takes precedence. If a referenced document or its version in this Addendum differs from that in IPC/WHMA-A-620C, the one in this Addendum takes precedence.

The User has the opportunity to specify alternate acceptance criteria.

1.12.2.2 Magnification Aids Magnification power for assembly inspection **shall** be at least the minimum inspection power specified in Table 1-1R and Table 1-2R. Other magnification powers within the inspection range may be used. The magnification power requirement is based on the gauge of the wire being inspected. For assemblies with mixed wire sizes, the greater magnification may be used for the entire assembly. If the presence of a defect cannot be determined at the inspection power, the item is acceptable. The referee magnification power is intended for use only after a defect has been determined but is not completely identifiable at the inspection power.

The tolerance for magnification aids is \pm 15% of the selected magnification power. Magnification aids should be maintained and calibrated as appropriate.