

IPC-HERMES-9852 Version 1.6

The Global Standard for Machine-to-Machine Communication in SMT Assembly

If a conflict occurs between the English language and translated versions of this document, the English version will take precedence.

Developed by The Hermes Standard Initiative and the IPC-HERMES-9852 Standard Task Group (2-17b) of the Electronic Product Data Description Committee (2-10) of IPC

Supersedes:

IPC-HERMES-9852, Version 1.5 – November 2022 IPC-HERMES-9852, Version 1.4 – February 2022 IPC-HERMES-9852, Version 1.3 – May 2021 IPC-HERMES-9852, Version 1.2 – June 2019 Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 105N Bannockburn, Illinois 60015-1249 Tel 847 615.7100 Fax 847 615.7105

Table of Contents

1	SCOPE	3.13	SetConfiguration	. 31
2	TECHNICAL CONCEPT	3.14	GetConfiguration.	. 32
2.1	Prerequisites	3.15	CurrentConfiguration	. 32
2.2	Board IDs	3.16	BoardForecast	. 33
2.3	Machine-to-Machine Communication	3.17	QueryBoardInfo	. 34
	(Horizontal Channel)	3.18	SendBoardInfo	. 35
2.3.1	Topology	3.19	SupervisoryServiceDescription	. 37
2.3.2	Connecting, Handshake and Detection of	3.20	BoardArrived	. 38
	Connection Loss	3.21	BoardDeparted	. 41
2.3.3	Normal Operation6	3.22	QueryWorkOrderInfo	. 44
2.3.4	Transport Error Handling	3.23	SendWorkOrderInfo	. 45
2.3.5	Handling of BoardForecast	3.24	ReplyWorkOrderInfo	. 47
2.3.6	Protocol States and Protocol Error	3.25	Command	. 48
	Handling	3.26	QueryHermesCapabilities	. 49
2.3.7	Handling of Attribute 'Route'	3.27	SendHermesCapabilities	. 50
2.3.8	Handling of Attribute 'Action'	4	APPENDIX	51
2.4	Remote Configuration. 19	4.1	Special Scenarios	
2.4.1	Topology	4.1.1	Board Tracking When Board	, 51
2.4.2	Remote Configuration	7.1.1	Is Torn Out From the Line	. 51
2.5	Communication ith Supervisory System	4.1.2	Board Tracking When Board	
	(Vertical Channel)		Is Temporarily Removed From the Line	. 52
2.5.1	Topology	4.1.3	Board Tracking When Board	
2.5.2	Connecting, Handshake and Detection of		Was Transferred without Data	. 53
	Connection Loss	4.1.4	Oven Error Loop	. 54
2.5.3	Protocol States and Protocol Error	4.1.5	Request Pause / Confirm Pause	
	Handling		and Resume Operation	. 55
3	MESSAGE DEFINITION	4.1.6	Board Removal at Downstream	
3.1	Message Format		Conveyor	. 56
3.2	Root Element	4.1.7	Reversal Transportation to a Flipping Unit	
3.3	CheckAlive24		Located Downstream a Process Machine	. 57
3.4	ServiceDescription	4.1.8	Reversal Transportation to a Flipping Unit	
3.5	Notification		Located Upstream a Process Machine	. 58
3.6	BoardAvailable	4.1.9	Board Routing within a Production Line	
3.7	RevokeBoardAvailable		by Predefined Routes.	. 60
3.8	MachineReady	4.1.10	Board Routing within a Production Line	<i>C</i> 1
3.9	RevokeMachineReady	4.2	Towards Target Locations	
3.10	StartTransport	4.2	Glossary / Abbreviations	
3.11	StopTransport	4.3	References	
3.12	TransportFinished	4.4	History	. 63

	Figures	Figure 18	Example of Communication Sequence
Figure 1	Generation of Board IDs2		BoardForecast without Product Change
Figure 2	TCP Connections in a Line	Eigen 10	
Figure 3	Upstream and Downstream From the	Figure 19	Hermes Interface States on Horizontal Channel
	Perspective of the Machine	Figure 20	Connection, Handshake and Connection
Figure 4	Connection, Handshake and Connection	riguie 20	Loss Detection on Vertical Channel 20
	Loss Detection on Horizontal Channel 4	Figure 21	Example for Connection Loss Detection
Figure 5	Example for Connection Loss Detection	riguie 21	with FeatureCheckAliveResponse
	with FeatureCheckAliveResponse on		on Vertical Channel 21
	Horizontal Channel 5	Figure 22	Hermes Interface States
Figure 6	Communication Sequence for Board	1 iguie 22	on Vertical Channel 22
	Transport6	Figure 23	Explanation for Top and Bottom
Figure 7	Communication Sequence	1 15410 23	Clearance Height
	in Scenario U1a	Figure 24	Line Setup with Barcode Readers
Figure 8	Communication Sequence	1 15410 2 1	and Repair Station
	in Scenario U1b	Figure 25	Line Setup with Fixed and Mobile
Figure 9	Communication Sequence	1180110 20	Barcode Readers – Board Temporarily
	in Scenario U2		Removed from Line
Figure 10	Communication Sequence	Figure 26	Line Setup with Fixed and Mobile
	in Scenario U3		Barcode Readers – Board Transferred
Figure 11	Communication Sequence		without Data 53
	in Scenario D111	Figure 27	SMT Subline That Is Involved
Figure 12	Communication Sequence		in Oven Error Loop
	in Scenario D2	Figure 28	Example Subline Showing Use Case
Figure 13	Communication Sequence		Request Pause / Confirm Pause
	in Scenario D3		and Resume Operation
Figure 14	Example of Communication Sequence	Figure 29	Board Removal at Downstream
	for BoardForecast		Conveyor 56
Figure 15	Example of Communication Sequence	Figure 30	Reversal Transportation, Downstream
	for BoardForecast		Flipping Unit
	with RevokeMachineReady	Figure 31	Reversal Transportation, Upstream
Figure 16	Example of Communication Sequence		Flipping Unit
n	with Several BoardForecast	Figure 32	Board Routing, Predefined Routes 60
Figure 17	Example of Communication Sequence	Figure 33	Board Routing, Multiple Target
	in Case with Error Handling		Locations61

IPC-HERMES-9852 Version 1.6 The Global Standard for Machine-to-Machine Communication in SMT Assembly

1 SCOPE

The aim of this specification is to create a state-of-the-art communication protocol for handling board transfers and associated data at surface-mount technology (SMT) production lines. Therefore, this new communication protocol has to cope with the following:

- Replace the electrical SMEMA interface as specified in IPC-SMEMA-9851
- Extend the interface to communicate:
 - Unique identifiers for the handled printed circuit boards (PCBs)
 - Equipment identifiers of the first machine noticing a PCB
 - Barcodes
 - Conveyor speed and intended board route
 - A lightweight digital twin of the product containing, e.g.,
 - Product type identifier
 - Length
 - Width
 - Thickness
 - Board state

With respect to version numbers The Hermes Standard adheres to the rules of Semantic Versioning 2.0.0 [SemVer_2.0.0]. Hints on naming:

- Wherever a feature is described by the word "shall" it is mandatory.
- The word "machine" is used for any equipment which can be found in a SMT production line (e.g., printers, placement machines, ovens, AOIs, transport modules, shuttles, stackers).
- The term "PCB" may also refer to carriers transporting PCBs.
- The word "Hermes" is used as abbreviation for "The Hermes Standard".
- "The Hermes Standard" and IPC-HERMES-9852 are synonyms for the standard specified in this document and might be used interchangeably.