Handbook for Press-fit Standard for Automotive Requirements and other High-Reliability Applications

Developed by the Cold Joining Press-fit Handbook Task Group (5-21n) of the Assembly & Joining Committee (5-20) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC

Tel 847 615.7100
Fax 847 615.7105
Table of Contents

1 SCOPE ... 1
 1.1 Applicability .. 1
 1.2 Measurement Units ... 1
 1.2.1 Verification of Dimensions 1
 1.3 Use of “Lead” .. 1
 1.4 Abbreviations and Acronyms 1
 1.5 Terms and Definitions 1

2 APPLICABLE DOCUMENTS .. 1
 2.1 IPC Documents .. 1
 2.2 International Electrotechnical Commission Documents ... 2
 2.3 American Society for Testing and Materials 2

3 INTRODUCTION TO PRESS-FIT TECHNOLOGY 2
 3.1 Background of Press-fit Technology 2
 3.2 Press-Fit Technology ... 2
 3.3 Advantages and Challenges 3
 3.4 Current and Future Trends 3

4 CONTACT PHYSICS ... 3

5 MATERIALS .. 6
 5.1 Pin Base Metal and Metallurgical Requirements 6
 5.1.1 Formability and Weldability 6
 5.1.2 Electrical Conductivity 7
 5.1.3 Yield Strength .. 7
 5.1.4 Resistance to Thermal Stress Relaxation 7
 5.1.5 Resistance Against Vibrations 8
 5.1.6 Material Selection ... 8
 5.1.7 Surface Requirements 9
 5.2 Surface Finish .. 9
 5.2.1 Coating – Press-Fit Surface Finishes 9
 5.2.2 Functional Impact of Surface Finishes 10
 5.3 Printed Boards .. 11
 5.3.1 Copper Thickness ... 11
 5.3.2 Printed Board Surface Finishes 12
 5.3.3 Printed Board Through Hole Dimensioning 12
 5.3.4 Printed Board Base Materials 13

6 HANDLING AND PACKAGING 14
 6.1 General .. 14
 6.2 Handling of Compliant Press-Fit Products 14
 6.2.1 Handling for Testing and Qualification 14
 6.2.2 Packaging for Mass Production 15
 6.2.3 Final Packaging for Shipping and Storage 16
 6.2.4 Product Storage (Warehouse) 17
 6.2.5 Packaging for Lab, Validation and Retained Samples ... 17

7 TEST METHODS ... 17
 7.1 Storage and Test Conditions 17
 7.2 Contact Resistance ... 17
 7.2.1 Test Equipment .. 17
 7.2.2 Test Procedure .. 17
 7.3 Spring Force Measurement 19
 7.3.1 Definition .. 19
 7.3.2 Measurement Process 20
 7.4 Push-In Method and Typical Push-In Forces 21
 7.4.1 Push-In Method .. 21
 7.4.2 Typical Push-In Forces 22

8 REWORK AND REPAIR .. 23

BIBLIOGRAPHY .. 23

APPENDIX A Abbreviations and Acronyms 25

Figures

Figure 3-1 Compliant Press-Fit Zone in PPTH 2
Figure 3-2 Examples of Different Styles of Compliant Press-Fit Zones [1] 2
Figure 4-1 Current Flow Through the A-Spots 4
Figure 5-1 Silicides in C70250 Alloy Visible as Black Spots 7
Figure 5-2 Thermal Relaxation Diagram 7
Figure 5-3 Conductivity vs. Strength Diagram of Copper Alloys 9
Figure 5-4 Schematic View of a Longitudinal Cross-Section Indicating the Locations for the Measurements (A to F) Shown as an Example on a Four-Layer PB. 12
Figure 5-5 Schematic View of Biasing Press-Fit Applications Between e.g., Two Compliant Press-Fit Zones 13
Figure 6-1 Front and Side Views of Fixture (1) and Support Plate (2) for Push-In Process 14
Figure 6-2 Fixture (1) and Push-Out Tool (2) for Push-Out Process 14
Figure 6-3 Strip with and without Overmolding 15
Figure 6-4 Reel Packaging ... 15
Figure 6-5 Single Parts .. 15
Figure 6-6 Blister Packaging 15
Figure 6-7 Tube Packaging 16
Figure 6-8 Tray Packaging 16
Figure 7-1 Contact Resistance Measurement Schematic 17
Figure 7-2 Using an Adjacent PPTH for Contacting .. 17
Figure 7-3 Using an Adjacent Via for Contacting .. 18
Figure 7-4 Using Adjacent Vias for Contacting in a Daisy Chain 18
Figure 7-5 Using the PPTH for Contacting in a Daisy Chain 18
Figure 7-6 Principle of the Spring Force Measurement (SFM) of Compliant Press-Fit Zones 19
Figure 7-7 Typical Spring-Force Measurement Characteristics (the corrective curve needs to be subtracted from the measured curves for the complete measurement). . . . 19
Figure 7-8 Schematic of Spring Force Measurement Tool 20
Figure 7-9 Example for the Spring Force Measurement Preparation of a Triple Pin 21
Figure 7-10 Slow Speed Push-In Equipment (A) and a Typical Push-In Force Curve (B) . . 21
Figure 7-11 High Speed Push-In Equipment (A) and a Typical Push-In Force Curve (B) . . 22
Figure 7-12 Different PB Surface Finishes (push-in force vs depth) 22
Figure 7-13 Push-In Forces for Different Press-Fit Designs 23
Figure 7-14 Push-In Forces: Various Plating Options on the Same Pin with the Same PB Finish . . 23

Tables
Table 3-1 Advantages and Common Challenges of Press-Fit Technology with Reference to Selective Soldering 3
Table 4-1 Mechanical and Electrical Tests in IPC-9797 4
Table 4-2 Optical and Cross-Sectional Inspections in IPC-9797 5
Table 4-3 Requirements for PB, Compliant Press-Fit Zone and Related Tests in IPC-9797 6
Table 5-1 Typically Applied Copper Alloys for Press-Fit Connectors and Their Properties .. 8
Table 5-2 Example for a Typically Observed PPTH Definition 13
Table 6-1 Packaging Levels 16
Handbook for Press-fit Standard for Automotive Requirements and other High-Reliability Applications

1 SCOPE

This document provides guidelines and supporting information for manufacturing electronic assemblies using compliant press-fit technology. The intent is to explain the “how-to” and “why” information, and fundamentals for these processes.

Additional detailed information can be found in documents referenced within each individual section. Users are encouraged to use those referenced documents to better understand the applicable subject areas.

This handbook is supporting the IPC-9797 standard.

1.1 Applicability This handbook is for guidance only. The design concepts, guidelines, and procedures presented in this document are not requirements, and this document is not binding, unless separately and specifically included by the applicable contract, approved drawing(s), or purchase order.

1.2 Measurement Units This standard uses International System of Units (SI units) per ASTM SI10, IEEE/ASTM SI 10, Section 3 [Imperial English equivalent units are in brackets for convenience]. The SI units used in this standard are millimeters (mm) [in] for dimensions and dimensional tolerances, Celsius (°C) [°F] for temperature and temperature tolerances, grams (g) [oz] for weight, and lux (lx) [footcandles] for illuminance.

Note: This standard uses other SI prefixes (ASTM SI10, Section 3.2) to eliminate leading zeros (for example, 0.0012 mm becomes 1.2 μm) or as an alternative to powers-of-ten (3.6 x 10^3 mm becomes 3.6 m).

1.2.1 Verification of Dimensions When an inspection is done on an assembly, measuring dimensions and determining percentages listed in the standard are not required unless there is a doubt or a question is raised about the acceptance of the product. When there is a doubt or a question is raised, then a referee determination should be implemented, at which time measurements should be made or percentages calculated using the referee magnifications defined in the standard. For determining conformance to the specifications in this standard, round all observed or calculated values “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding method of ASTM Practice E29. For example, specifications of 2.5 mm max, 2.50 mm max, or 2.500 mm max, round the measured value to the nearest 0.1 mm, 0.01 mm, or 0.001 mm, respectively, and then compare to the specification number cited.

1.3 Use of “Lead” For readability and translation, this document uses the noun “lead” only to describe leads of a component. The metallic element “lead” is always written as Pb.

1.4 Abbreviations and Acronyms Periodic table elements are abbreviated in the standard. See Appendix A for abbreviations, including elements and acronyms used in this standard.

1.5 Terms and Definitions Other than those terms listed in IPC-9797, the definitions of terms used in this handbook are in accordance with IPC-T-50.

2 APPLICABLE DOCUMENTS

2.1 IPC Documents

IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits
IPC-6012 Qualification and Performance Specification for Rigid Printed Boards
IPC-6012EA Automotive Applications Addendum to IPC-6012E, Qualification and Performance Specification for Rigid Printed Boards
IPC-9797 Press-fit Standard for Automotive Requirements and other High-Reliability Applications
IPC-A-600 Acceptability of Printed Boards
IPC-4552 Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Boards
IPC-4553 Specification for Immersion Silver Plating for Printed Boards

1 www.ipc.org
2 www.iec.ch
3 www.astm.org
3 INTRODUCTION TO PRESS-FIT TECHNOLOGY

3.1 Background of Press-fit Technology Press-fit technology is going back to the 1970s. It was initially used in the telecommunication industry, starting with solid pins and moving later to compliant variants. Press-fit pins with compliant press-fit zones were standardized in the 80s, becoming a standalone IEC standard (IEC 60352-5) in 2004. The press-fit technology was further developed to meet the requirements of high performance/harsh environment (IPC Class 3) electronic products. This finally triggered the preparation of the IPC-9797 Press-fit Standard for Automotive Requirements and Other High Reliability Applications. Typical fields of application are single-pin insertion as well as the assembly of connectors integrated in housings.

3.2 Press-Fit Technology Press-fit technology establishes an electro-mechanical connection between a compliant press-fit zone and press-fit plated-through hole (PPTH) of a printed board (PB). In the contact areas, between the surfaces of the compliant