Assembly Guidelines for
Single-Sided and Double-Sided
Flexible Printed Circuits

ANSI/IPC-FA-251

Original Publication
February 1992

A standard developed by the Institute for Interconnecting
and Packaging Electronic Circuits

2215 Sanders Road
Northbrook, Illinois
60062-6135

Tel 847 509.9700
Fax 847 509.9798
URL: www.ipc.org
Table of Contents

1.0 INTRODUCTION .. 1
 1.1 Scope ... 1
 1.2 Purpose ... 1
 1.3 Classification .. 1
 1.4 Dimensions/Tolerances .. 1

2.0 APPLICABLE DOCUMENTS .. 1
 2.1 IPC ... 1
 2.2 Electronic Industries Association (EIA) 2
 2.3 Military .. 2
 2.4 Federal .. 2
 2.5 American National Standards Institute (ANSI) 2

3.0 GUIDELINES .. 2
 3.1 Terms and Definitions .. 2
 3.2 Materials... 2
 3.3 Assembly Process Considerations 4

4.0 COMPONENT ASSEMBLY CONSIDERATIONS 5
 4.1 Connectors... 10
 4.2 Connector Assembly Considerations 10
 4.3 Unpackaged Semiconductor Components 11
 4.4 Mechanical and Electromechanical Components 18

5.0 ASSEMBLY TECHNIQUES ... 18
 5.1 Soldering Preparation ... 18
 5.2 Manual Soldering .. 18
 5.3 Machine Soldering ... 19
 5.4 IR Reflow .. 21
 5.5 Vapor Phase Reflow .. 22
 5.6 Tape Automated Bonding (TAB) 22
 5.7 Laser Reflow Soldering .. 23
 5.8 Conductive Adhesive ... 24
 5.9 Encapsulation .. 26

6.0 CLEANING TECHNIQUES ... 27
 6.1 Pre-solder Cleaning ... 27
 6.2 Post Solder Cleaning ... 28
 6.3 Cleaning Systems ... 28
 6.4 Testing and Qualification ... 28

7.0 HANDLING CONSIDERATIONS 29
 7.1 General Guidelines ... 29

8.0 QUALITY ASSURANCE ... 29
 8.1 Quality Concepts .. 29
 8.2 Requirements ... 30

9.0 MECHANICAL INSTALLATION 30

Figures
- Figure 1 Copper reinforcement for mechanical fastener 3
- Figure 2 ESD drawing .. 4
- Figure 3a Axial-led, auto-assembly package 5
- Figure 3b Typical axial-led components 5
- Figure 4 Typical radial-led components 6
- Figure 5 Chip components types 6
- Figure 6 Typical Small Outline Transistor (SOT) packages 7
- Figure 7 Typical Small Outline Integrated Circuit (SOIC) package ... 7
- Figure 8 Typical SIP .. 7
- Figure 9a Typical dual, in-line package 8
- Figure 9b DIP modification for surface mount 8
- Figure 10 Ribbon-led components 8
- Figure 11 Through-hole mounting of ribbon-led components ... 9
- Figure 12 Typical surface-mount configuration for ribbon-led component 9
- Figure 13 Typical leadless and leaded chip carriers 9
- Figure 14 Typical PGA ... 9
- Figure 15 PAD grid array .. 10
- Figure 16 Plastic Ledged Chip Carrier (PLCC) 10
- Figure 17 50 Bonding Variables 11
- Figure 18 Through hole connectors 12
- Figure 19 Insulation displacement connectors 12
- Figure 20 Surface mount connectors 13
- Figure 21 Pressure Contacts .. 13
- Figure 22 Typical flexible etched circuitry-to-board application (ZIF Connectors) 14
- Figure 23 Thermocompression stitch wire bonding 15
- Figure 24 Ultrasonic bonding steps 15
- Figure 25 Mechanics of ultrasonic wire bonding 16
- Figure 26a Typical ball bonding cycle 17
- Figure 26b Mechanics of thermosonic wire bonding 17
- Figure 27 ESD basic symbol ... 29

Tables
- Table 1 Some Commonly Used Flex Circuit Components ... 5
- Table 2 Wire Bonding Comparisons 14
1.0 INTRODUCTION
This document is intended to provide the designer and manufacturing engineer the key issues related to Flexible Printed Circuit (FPC) assembly techniques; and where appropriate, sections from other IPC documents have been excerpted in order to highlight the concerns and design principles. These guidelines provide information on what type of parts are available, the techniques and processes necessary for their proper use, possible advantages, disadvantages or problems, how to start implementation, and where to find additional information.

1.1 Scope This document provides guidelines for the assembly of components and mounting hardware to single- and double-sided flexible printed wiring. In addition, the guidelines describe the type of materials and processes that may be used to accomplish the proper electronic assembly.

1.2 Purpose The purpose of this document is to guide the user by seeking answers to questions related to accepted, effective methods of assembly processes to FPC. The methods described herein are not standards, since state of the art is constantly changing such that applications and requirements may vary beyond the scope of this publication.

1.3 Classification Three classifications are assigned, based on increasing difficulty and sophistication of assembly. These are,

1. Class A: Simple assembly, employing through the board component mounting;
2. Class B: Surface mounting, employing all the techniques to make that assembly choice reliable;
3. Class C: An intermixing of through the board (through hole) and surface mount methods.

In addition to the three classes of assembly, there are two types of assembly. They are:

1. Type 1: Assemblies with components mounted to one side of the finished flexible board.
2. Type 2: Components mounted to both sides of a finished flexible board.

Note: These classes and types are not to be confused with the classes and types of IPC-FC-250 which refer to end-item use. All classes of IPC-FA-251 assemblies may apply to any class of IPC-FC-250 circuit.

1.4 Dimensions/Tolerances All dimensions and tolerances are expressed in ISO units with English system equivalents shown in brackets []. Users are cautioned to employ this system and not intermix ISO and English system units. Reference information is shown in parenthesis (). Dimensions and tolerances shall be interpreted in accordance with ANSI Y14.5M.

2.0 APPLICABLE DOCUMENTS

2.1 IPC
IPC-T-50 Terms and Definitions for Interconnecting and Packaging Electronic Circuits.
IPC-SC-60 Post Solder Solvent Cleaning Handbook
IPC-AC-62 Post Solder Aqueous Cleaning Handbook
IPC-CM-78 Guidelines for Surface Mounting and Interconnecting Chip Carriers
IPC-PC-85 Certification of IPC Defined Products Under the NECQ System
IPC-CI-86 Printed Board Manufacturing Capability Identification
IPC-PC-90 General Requirements for Implementation of Statistical Process Control
IPC-MF-150 Metal Foil for Printed Wiring Applications
IPC-FC-231 Flexible Bare Dielectrics for Use in Flexible Printed Wiring
IPC-FC-232 Adhesive Coated Dielectric Films for Use as Cover Sheets for Flexible Printed Wiring
IPC-FC-233 Flexible Adhesive Bonding Films
IPC-FC-241 Flexible Metal-Clad Dielectrics for Use in Fabrication of Flexible Printed Wiring
IPC-D-249 Design Standard for Flexible Single- and Double-Sided Printed Boards
IPC-FC-250 Specification for Single- and Double-Sided Flexible Printed Wiring
IPC-A-600 Acceptability of Printed Boards
IPC-A-610 Acceptability of Printed Board Assemblies