IPC-ET-652

Guidelines and Requirements for Electrical Testing of Unpopulated Printed Boards

ANSI/IPC-ET-652
A standard developed by IPC
Table of Contents

1.0 SCOPE... 1
 1.1 Purpose... 1
 1.2 Introduction.. 1

2.0 APPLICABLE AND REFERENCE DOCUMENTS........ 1
 2.1 Applicable Documents.. 1
 2.2 Reference Documents.. 1

3.0 TERMS, DEFINITIONS, AND ACRONYMS................. 1
 3.1 Terms and Definitions...................................... 1
 3.2 Acronyms.. 3

4.0 TEST METHODS.. 4
 4.1 Continuity Test.. 4
 4.1.1 Voltage... 4
 4.1.2 Resistance.. 4
 4.1.3 Current... 4
 4.2 Isolation Test.. 4
 4.2.1 Voltage... 4
 4.2.2 Capacitance.. 4
 4.2.3 Resistance.. 4
 4.2.4 Current... 4
 4.3 Test Parameter Matrix.. 4
 4.4 100% Continuity and Isolation Electrical Test Definition........... 4
 4.4.1 ... 4
 4.4.2 ... 5
 4.4.3 Other Implications ... 5

5.0 FIXTURING ALTERNATIVES AND PROBES................. 6
 5.1 Fixturing Alternatives....................................... 6
 5.2 Probes.. 7
 5.2.1 General Factors.. 7
 5.2.2 Specific Factors.. 7

6.0 TEST PROGRAM GENERATION.............................. 9
 6.1 Reference Test.. 9
 6.1.1 Process Overview... 9
 6.1.2 Strengths and Weaknesses................................. 9
 6.2 Gerber Net List Test.. 9
 6.2.1 Process Overview... 9
 6.2.2 Strengths and Weaknesses................................. 10
 6.3 CAD Net List Test... 10
 6.3.1 Process Overview... 10
 6.3.2 Strengths and Weaknesses................................. 11

7.0 SURFACE MOUNT CONSIDERATIONS.................... 11
 7.1 Purpose... 11
 7.2 Considerations.. 11

8.0 CHARACTERIZATION TESTS................................. 11
 8.1 High Potential (Hipot) Testing........................... 11
 8.1.2 Voltage.. 11
 8.1.3 Resistance.. 11
 8.1.4 Current.. 12
 8.1.5 Precaution.. 12
 8.1.6 Test Procedure... 12
 8.2 Impedance Testing.. 12
 8.2.1 Test Equipment.. 12
 8.2.2 Pulse Amplitude... 12
 8.2.3 Test Limits.. 12
 8.2.4 Calibration.. 12
 8.3 Capacitor Test.. 12
 8.3.1 Capacitor Test Stimulus.................................. 12
 8.4 Embedded Resistor Test................................. 12
 8.4.1 Resistor Test Stimulus................................... 12
 8.5 Current Carrying Capacity............................... 12

9.0 HARDWARE CONCERNS... 12
 9.1 Environmental Considerations........................... 12
 9.1.1 The Tester.. 13
 9.1.2 The Electronics.. 13
 9.2 Calibration.. 13
 9.3 Fixtures.. 13

10.0 STATISTICAL PROCESS CONTROL (SPC) FOR ELECTRICAL TEST OPERATIONS........ 13
 10.1 SPC Applications... 13
 10.2 Test Equipment Implications for SPC.................. 13

Figures
 Figure 1–1 ATE selection criteria............................ 2
 Figure 4–1 Continuity test.................................... 4
 Figure 4–2 Isolation test..................................... 5
 Figure 5–1 Probe tip styles.................................. 8

Tables
 Table 4–1 Performance Classes.............................. 5
 Table 4–2 Typical Electrical Test Requirements........ 5
 Table 5–1 Bare Board Fixturing Alternatives (Advantages and Disadvantages)..... 6
Guidelines and Requirements for Electrical Testing of Unpopulated Printed Boards

1.0 SCOPE

This document is presented to assist in selecting the test analyzer, test parameters, test data, and fixturing required to perform electrical test(s) on all unpopulated printed boards and innerlayers.

The users must determine the test parameters and fixturing requirements to test for continuity (open), isolation (leakage/short), and other special characteristics (i.e., impedance, hipot, capacitance, current carrying capacity, etc.) that will satisfactorily evaluate the critical electrical characteristics of specific printed boards.

1.1 Purpose

Electrical testing verifies that the printed networks on the boards carry signals according to design requirements.

Electrical test does not ensure that the board can be assembled nor that the board meets all of the customer’s requirements. Many physical characteristics of the board (dimensional accuracy, solder mask and nomenclature registration, presence of holes, etc.) cannot be determined by electrical test. Other checks should be employed to confirm these characteristics.

1.2 Introduction

Electrical testing of unpopulated printed boards assures that the board conforms to the electrical design requirements. In addition, electrical testing data can be used to control and improve the printed board manufacturing process.

Electrical testing requires both initial capital investments as well as ongoing recurrent costs. Initially, electrical testing requires an investment in properly trained personnel, hardware, and software. Following this initial investment, handling, testing, performance diagnostics, and rework all affect the recurring cost of electrical tests. In selecting the appropriate test technology, equipment, and associated fixturing, a suitable compromise between productivity, features, and costs, can be found.

The costs associated with electrical testing can vary dramatically, from a few cents for fixture test probes to hundreds of thousands of dollars. Costs alone, however, should never be the only criteria for selecting an ATE system. As shown in Figure 1–1, many other important areas require consideration. For example, spacing and density may be of paramount importance to one user, while another may be concerned with testing parameters and service reliability. Look carefully at all areas of concern and how they may affect each other, not just how they perform individually.

Whatever the selection criteria may be, qualifying “benchmarks” should be performed on known product. Furthermore, contingencies covering specific requirements should be included in any purchase order prior to any major equipment purchase.

Certain technical factors will affect test comprehensiveness. For example, when selecting test voltages and resistances for the PCB, you must take into account both the final application of the board and the level of defect analysis needed to insure acceptable product. Electrical testing parameters that allow high productivity could also allow high defect escape rates and therefore result in higher assembly rework costs. On the other hand, unnecessarily stringent test parameters necessitate excessive capital equipment costs but may not be justified by the potentially higher defect capture rate and lower yields.

2.0 APPLICABLE AND REFERENCE DOCUMENTS

The following documents, of the issue currently in effect, are applicable to the extent specified herein, or can be used for additional reference.

2.1 Applicable Documents

IPC-T-50 Terms and Definitions
IPC-D-275 Design Standard for Rigid Printed Boards and Rigid Printed Board Assemblies
IPC-D-356 Bare Board Electrical Test Information in Digital Form
MIL-STD-45662 Calibration Systems Requirements

2.2 Reference Documents

IPC-AI-642 Users Guidelines for AOI of A/W, Innerlayers and Unpopulated PWBs

3.0 TERMS, DEFINITIONS, AND ACRONYMS

3.1 Terms and Definitions

The definitions of terms used herein shall be in accordance with IPC-T-50 and the following:

Adjacent Features Features that are closest in proximity to the feature being evaluated.