Design and Critical Process Requirements for Cable and Wiring Harnesses

Developed by the Wire Harness Design Task Group (7-31k) and IPC-HDBK-620 Handbook Task Group (7-31h) of the Product Assurance Committee (7-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
Table of Contents

1 **GENERAL** ... 1
 1.1 Scope .. 1
 1.2 Purpose .. 1
 1.3 Performance/Product Classification 1
 1.4 Definition of Requirements 2
 1.4.1 Design Requirement Format (A/N) 2
 1.4.2 Requirements Flowdown 2
 1.4.3 Commercial Off-The-Shelf (COTS) 2
 1.4.4 Existing or Previously Approved Designs 2
 1.5 Measurement Units and Applications 2
 1.5.1 Line Drawings and Illustrations 3
 1.6 Definition of Terms .. 3
 1.7 Engineering Documentation 3
 1.8 Order of Precedence ... 3
 1.8.1 Conflict ... 3
 1.8.2 Clause References ... 3
 1.9 Appendices A-C .. 3
 1.10 Approval of Departures from Standards and Requirements .. 3

2 **APPLICABLE DOCUMENTS** ... 4
 2.1 Aerospace .. 4
 2.2 Commercial ... 4
 2.3 Federal .. 5
 2.4 Military Handbooks .. 5
 2.5 Military Specifications .. 5
 2.6 Reference ... 5

3 **DESIGN PHILOSOPHY (Figure 3-1)** 7
 3.1 General Design Requirements 7
 3.2 System Requirements Specification (SyRS) 8
 3.2.1 Document Interface Control (ICD) 8
 3.2.2 Performance and Reliability 9
 3.2.3 Workmanship ... 9
 3.2.4 Environmental Requirements 9
 3.2.5 Packaging, Handling, Shipping, and Transportation (PHS&T) .. 9
 3.2.6 Documentation Requirements 9
 3.2.7 Intellectual Property (IP) Control Requirements .. 9

4 **SELECTION OF PARTS, MATERIALS AND PROCESSES** .. 10
 4.1 Commonality .. 10
 4.2 Flammability .. 10
 4.3 Outgassing ... 10
 4.4 Toxic Products and Formulations 11
 4.5 Foreign Object Debris (FOD) Control Plan 11
 4.6 Prohibited/Restricted Usage Parts, Materials, Processes (PMP) .. 11
 4.6.1 Acetic Acid Cure RTV Silicone Sealants, Adhesives, and Coatings 11
 4.6.2 Beeswax Wax (ALL TYPES) 11
 4.6.3 Beryllium (Be) ... 11
 4.6.4 Cadmium (Cd) ... 11
 4.6.5 Crimping Of Solder-Tinned and Solid Conductors ... 12
 4.6.6 Cuprous Oxide Corrosion (Red Plague) (Figure 4-1) ... 12
 4.6.7 Fluorine Attack (White Plague) (Figure 4-2) 12
 4.6.8 FN/HN Grade Polyimide (Kapton®) Insulated Wiring ... 13
 4.6.9 Glass/Glass-Like Materials (Figure 4-3) 13
 4.6.10 Use of Lead-Free Tin (Sn) Materials and/or Processes (Figure 4-4) 13
 4.6.11 Lock Washers (Tooth Type) (Figure 4-5) 14
 4.6.12 Magnesium (Mg) .. 14
 4.6.13 Mercury (Hg) ... 14
 4.6.14 Micro-D Connectors .. 14
 4.6.15 Natural Rubber Materials 14
 4.6.16 Polyvinyl Chloride (PVC) 15
 4.6.17 Silver (Ag) ... 15
 4.6.18 Splices (Figure 4-6) .. 15
 4.6.19 Zinc (Zn) .. 16
 4.7 Wire & Cable .. 16
 4.7.1 Conductor Sizing .. 16
 4.7.2 Conductor Material and Coating 17
 4.7.3 Multi-Conductor Cables 17
 4.7.4 Coaxial Cables .. 17
 4.7.5 Optical Fiber, Optical Fiber Cable, and Optical Fiber Assemblies (Figure 4-7) 18
 4.8 Connectors (Figure 4-8) .. 18
 4.8.1 Mating Provisions .. 19
 4.8.2 Moisture Protection .. 19
 4.8.3 Pin Assignment ... 19
 4.8.4 Protection of Connectors 20
 4.8.5 Protection of Severed Electrical Circuits 20

5 **ELECTRICAL REQUIREMENTS** 20
 5.1 Derating .. 20
 5.2 Coronal Discharge (Suppression) 21
9.39 Contact, Pin .. 35
9.40 Contact, Socket ... 35
9.41 Contaminant .. 35
9.42 Crimp ... 35
9.43 Crimping .. 35
9.44 Critical Pressure Environment 35
9.45 Design Authority .. 35
9.46 Dielectric Withstanding Voltage (DWV) 35
9.47 Electrical, Electronic and Electromechanical (EEE) 35
9.48 Electro-Explosive Device (EED) 35
9.49 Electro-Explosive Device Signal (EEDS) 35
9.50 Electronic Industries Alliance (EIA) 35
9.51 High Voltage (HV) .. 35
9.52 Hot Swap (Electrical Function: Mate First/Break Last) ... 36
9.53 Interchangeable Item .. 36
9.54 Interface Control Document or Interface Control Drawing (ICD) ... 36
9.55 Institute of Electrical and Electronics Engineers (IEEE) ... 36
9.56 Intellectual Property (IP) ... 36
9.57 Interconnecting and Packaging Electronic Circuits (IPC) ... 36
9.58 Lay .. 36
9.59 Length of Lay .. 36
9.60 Limited Life ... 36
9.61 Lock Wire ... 36
9.62 Mean Time To Failure (MTTF) 36
9.63 Military Standard (MIL-STD) 36
9.64 National Aeronautics and Space Administration (NASA) ... 36
9.65 NASA Standard (NASA-STD) 36
9.66 Objective Evidence (OE) ... 36
9.67 Offgassing .. 36
9.68 Operational Life .. 36
9.69 Packaging, Handling, Storage, and Transportation (PHS&T) ... 37
9.70 Qualification .. 37
9.71 Radiofrequency (RF) .. 37
9.72 Radiofrequency Interference (RFI) 37
9.73 Red Plague (Cu$_2$O) ... 37
9.74 Red Plague Control Plan (RPCP) 37
9.75 Relative Humidity (RH) .. 37
9.76 Root Mean Square (a.k.a. Quadratic Mean) (RMS or rms) ... 37
9.77 Safety Cable .. 37
9.78 Safety Wire (Lock Wire) .. 37
9.79 Scoop-Proof (Connector) ... 37
9.80 Service Life .. 37
9.81 Shelf Life ... 37
9.82 Solder Sleeve .. 38
9.83 Smart Short .. 38
9.84 Splice (v) ... 38
9.85 Stranded Conductor ... 38
9.86 System Requirements Specification (SRS) 38
9.87 Tailoring ... 38
9.88 Tin Pest (a.k.a. Tin Disease/Tin Plague) 38
9.89 Total Mass Loss (TML) ... 38
9.90 Volts Direct Current (V dc) 38
9.91 Wire Diameter (d) ... 38
9.92 Wire Dress ... 38

APPENDIX A Military/Space Applications Requirements 44

APPENDIX B Electrical Wire and Cable Acceptance Tests 47

APPENDIX C Bend Radius .. 49

Figures
Figure 3-1 Wire, Cables, and Harnesses 7
Figure 3-2 Cable and Harness Design Process 10
Figure 4-1 Red Plague (Cuprous Oxide Corrosion) 12
Figure 4-2 White Plague (Fluorine Attack) 12
Figure 4-3 Glass/Glass-Like Materials (e.g., Fuses) 13
Figure 4-4 Tin Whiskers on Cardguide 13
Figure 4-5 Lock Washer (Internal/Split/External Tooth) ... 14
Figure 4-6 In-Line Lash Solder Splice 15
Figure 4-7 Fiber Optic Cable ... 18
Figure 4-8 Exploded View of an Assembled Connector 18
Figure 5-1 Group Grounding of Individual Shield Terminations ... 24
Figure 6-1 Example of a Pre-Formed Heat-Shrinkable Branch Boot ... 27
Figure 8-1 Connection Orientation (Clocking) 31

Tables
Table 1 Derating (Class 3, Military Space) 39
Table 2 Summary of Circuit Categories and Shielding Requirements ... 40
Table 3 Bond Classification .. 41
Table 4 Types of Splices ... 42
Table 5 Electrical Creepage and Clearance Distance 43
Table A1 Military/Space Applications Requirements 45
Design and Critical Process Requirements for Cable and Wiring Harnesses

1 GENERAL

1.1 Scope This document provides design and critical process requirements and technical insight that have been removed from the acceptance standards for cable and wire harness assemblies. Reference materials listed in this text are among those considered as required reading. The User is encouraged to obtain all relevant referenced materials as this document cannot (nor can any single document) cover every material, process, environment, performance, or safety aspect that affect a given design.

1.2 Purpose “Design Requirements for Cable and Wiring Harnesses” is the cable and wiring harness and systems-level design requirements companion to IPC/WHMA-A-620, “Requirements and Acceptance for Cable and Wire Harness Assemblies,” and its associated space addendum.

The intent of this document is to set forth the general design requirements for electrical wiring harnesses and cable assemblies. This document is intended for use by the design engineer, manufacturing engineer, quality engineer, or other individual responsible for the tailoring of specific requirements of this document to the applicable performance class.

It is not the intent of this document to exclude any alternate or contractor-proprietary documents or processes that meet or exceed the baseline of requirements established by this document. Use of alternate or contractor-proprietary documents or processes shall [A1A2A3] require review and prior approval of the User.

For purposes of this document:

• The Designer is the design agent for the User.
• The User is the individual, organization, company, contractually designated authority, or agency responsible for the procurement or design of electrical/electronic/electromechanical (EEE) hardware, and having the authority to define the class of equipment and any variation or restrictions to the requirements of this document (i.e., the originator/custodian of the contract detailing these requirements). The User is considered the Design Authority.
• The Supplier is considered the individual, organization or company which provides the Manufacturer (assembler) components (electrical, electronic, electromechanical, mechanical, printed boards, etc.) and/or materials (solder, flux, cleaning agents, etc.).
• The Manufacturer is considered the entity that provides a service or product to the User.

1.3 Performance/Product Classification This document recognizes that electrical wiring harnesses and cable assemblies are subject to performance/product classifications by intended end-item use. Three general end-product classes have been established to reflect differences in producibility, complexity, functional performance requirements, and verification (inspection/test) frequency. It should be recognized that there may be requirement overlaps between classes.

The User is responsible for defining the product class required, whether compliance to any of the A through C Appendices is required, and to indicate any exceptions to specific parameters where appropriate.

Class 1 – General Electronic Products Includes products suitable for applications where the major requirement is function of the completed assembly.

Class 2 – Dedicated Service Electronic Products Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically, the end-use environment would not cause failures.

Class 3 – High Performance/Harsh Environment Electronic Products Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.